An experimental study on the effects of relative rotation direction on the wake interferences among tandem wind turbines

被引:0
作者
Wei Yuan
Wei Tian
Ahmet Ozbay
Hui Hu
机构
[1] Iowa State University,Department of Aerospace Engineering
[2] Beihang University,School of Energy and Power Engineering
[3] Shanghai Jiao Tong University,School of Aeronautics and Astronautics
来源
Science China Physics, Mechanics & Astronomy | 2014年 / 57卷
关键词
wind energy; wind turbine aerodynamics; wind turbine wake interference; complex vortex flows;
D O I
暂无
中图分类号
学科分类号
摘要
An experimental study was conducted to investigate the effects of relative rotation direction on the wake interferences among two tandemwind turbines models. While the oncoming flow conditions were kept in constant during the experiments, turbine power outputs, wind loads acting on the turbines, and wake characteristics behind the turbines were compared quantitatively with turbine models in either co-rotating or counter-rotating configuration. The measurement results reveal that the turbines in counter-rotating would harvest more wind energy from the same oncoming wind, compared with the co-rotating case. While the recovery of the streamwise velocity deficits in the wake flows was found to be almost identical with the turbines operated in either co-rotating or counter-rotating, the significant azimuthal velocity generated in the wake flow behind the upstream turbine is believed to be the reason why the counter-rotating turbines would have a better power production performance. Since the azimuthal flow velocity in the wake flow was found to decrease monotonically with the increasing downstream distance, the benefits of the counter-rotating configuration were found to decrease gradually as the spacing between the tandem turbines increases. While the counter-rotating downstream turbine was found to produce up to 20% more power compared with that of co-rotating configuration with the turbine spacing being about 0.7D, the advantage was found to become almost negligible when the turbine spacing becomes greater than 6.5D. It suggests that the counter-rotating configuration design would be more beneficial to turbines in onshore wind farms due to the smaller turbine spacing (i.e., ∼3 rotor diameters for onshore wind farms vs. ∼7 rotor diameters for offshore wind farms in the prevailing wind direction), especially for those turbines sited over complex terrains with the turbine spacing only about 1–2 rotor diameters.
引用
收藏
页码:935 / 949
页数:14
相关论文
共 60 条
  • [1] Barthelmie R J(2010)Evaluation of power losses due to wind turbine wakes at the Nysted offshore wind farm Wind Energy 13 573-586
  • [2] Jensen L E(2003)Wind turbine wake aerodynamics Prog Aerospace Sci 39 467-510
  • [3] Vermeer L J(2006)Measurement on a wind turbine wake: 3D effects and bluff body vortex shedding Wind Energy 9 219-236
  • [4] Sørensen J N(2012)Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind Exp Fluids 52 1277-1294
  • [5] Crespo A(2012)Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer Exp Fluids 52 1219-1235
  • [6] Medici D(2011)Large eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms J Wind Eng Ind Aerodyn 99 154-168
  • [7] Alfredsson P(2011)Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parameterizations Boundary-Layer Meteorology 138 345-366
  • [8] Hu H(2003)Offshore wind turbine wakes measured by sodar J Atmospheric Oceanic Tech 20 466-477
  • [9] Yang Z(2004)Efficient development of offshore wind farms (ENDOW): Modeling wake and boundary layer interactions Wind Energy 7 225-245
  • [10] Sarkar P(2012)Optimal turbine spacing in fully developed wind farm boundary layers Wind Energy 15 305-317