On the Freiman theorem in finite fields

被引:0
|
作者
S. V. Konyagin
机构
[1] Moscow State University,
来源
Mathematical Notes | 2008年 / 84卷
关键词
Freiman theorem; set addition; finite field; Abelian group; Hamming metric; arithmetic progression; doubling constant;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:435 / 438
页数:3
相关论文
共 50 条
  • [21] A model-theoretic note on the Freiman–Ruzsa theorem
    Amador Martin-Pizarro
    Daniel Palacín
    Julia Wolf
    Selecta Mathematica, 2021, 27
  • [22] FREIMAN THEOREM, FOURIER TRANSFORM AND ADDITIVE STRUCTURE OF MEASURES
    Iosevich, A.
    Rudnev, M.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 86 (01) : 97 - 109
  • [23] On Waring's problem: Beyond Freiman's theorem
    Bruedern, Joerg
    Wooley, Trevor D.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (01):
  • [24] The relevance of Freiman’s theorem for combinatorial commutative algebra
    Jürgen Herzog
    Takayuki Hibi
    Guangjun Zhu
    Mathematische Zeitschrift, 2019, 291 : 999 - 1014
  • [25] Compressions, convex geometry and the Freiman-Bilu theorem
    Green, B.
    Tao, T.
    QUARTERLY JOURNAL OF MATHEMATICS, 2006, 57 : 495 - 504
  • [26] An effective Bertini theorem over finite fields
    Ballico, E
    ADVANCES IN GEOMETRY, 2003, 3 (04) : 361 - 363
  • [27] A POLYNOMIAL ROTH THEOREM FOR CORNERS IN FINITE FIELDS
    Han, Rui
    Lacey, Michael T.
    Yang, Fan
    MATHEMATIKA, 2021, 67 (04) : 885 - 896
  • [28] A Torelli Theorem for Curves over Finite Fields
    Bogomolov, Fedor
    Korotiaev, Mikhail
    Tschinkel, Yuri
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2010, 6 (01) : 245 - 294
  • [29] Characterisation of Meyer sets via the Freiman-Ruzsa theorem
    Konieczny, Jakub
    JOURNAL OF NUMBER THEORY, 2023, 253 : 278 - 294
  • [30] A FREIMAN-TYPE THEOREM FOR LOCALLY COMPACT ABELIAN GROUPS
    Sanders, Tom
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (04) : 1321 - 1335