Bin packing with divisible item sizes and rejection penalties

被引:0
作者
Jianping Li
Pengxiang Pan
Lijian Cai
Junran Lichen
Wencheng Wang
机构
[1] Yunnan University,Department of Mathematics
[2] East Outer Ring South Road,Institute of Applied Mathematics
[3] University Town,undefined
[4] Academy of Mathematics and Systems Science,undefined
[5] Chinese Academy of Sciences,undefined
来源
Optimization Letters | 2022年 / 16卷
关键词
Combinatorial optimization; Bin packing; Divisible item sizes; Rejection penalties; Exact combinatorial algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
The bin packing problem with divisible item sizes and rejection penalties (the BP–DR problem, for short) is defined as follows. Given a lot of bins with same capacity limitation L and a set X={x1,…,xn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\{x_{1},\ldots ,x_{n}\}$$\end{document} of items with a size function s:X→Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s: X\rightarrow Z^{+}$$\end{document} and a penalty function p:X→R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p:X\rightarrow R^{+}$$\end{document}, where the item sizes are divisible, i.e., either s(xi)|s(xj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(x_{i})|s(x_{j})$$\end{document} or s(xj)|s(xi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(x_{j})|s(x_{i})$$\end{document} for any two items xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{i}$$\end{document} and xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{j}$$\end{document} with 1≤i<j≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i < j\le n$$\end{document}, each of these n items must be either put into a bin under the constraint that the summation of sizes of items in that bin does not exceed L, or rejected with its penalty that we must pay for. No item can be spread into more than one bin. We consider the BP–DR problem and its important variant. (1) The BP–DR problem is asked to find a subset of items such that the items in that subset can be put in some bins to satisfy the constraint mentioned-above, the objective is to minimize the number of bins used plus the summation of penalties paid for the rejected items, and (2) Given a penalty budget B∈R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\in R^{+}$$\end{document}, the bin packing problem with divisible item sizes and bounded rejection penalties (the BP–DBR problem, for short) is asked to find a subset of items such that the items in that subset can be put in some bins to satisfy the constraint mentioned-above and that the summation of penalties paid for the rejected items does not exceed B, the objective is to minimize the number of bins used. In this paper, we design two exact combinatorial algorithms to solve the BP–DR problem and the BP–DBR problem, respectively.
引用
收藏
页码:1587 / 1597
页数:10
相关论文
共 15 条
  • [1] Coffman EG(1987)Bin packing with divisible item sizes J. Complex. 3 406-428
  • [2] Garey MR(2009)A polynomial algorithm for the multiple knapsack problem with divisible item sizes Inf. Process. Lett. 109 582-584
  • [3] Johnson DS(2006)Bin packing problems with rejection penalties and their dual problems Inf. Comput. 204 795-815
  • [4] Detti P(2010)Bin packing with rejection revisited Algorithmica 56 505-528
  • [5] Dósa G(2010)AFPTAS results for common variants of bin packing: a new method for handling the small items SIAM J. Optim. 20 3121-3145
  • [6] He Y(1981)Bin packing can be solved within 1+ Combinatorica 1 349-355
  • [7] Epstein L(1994) in linear time Nav. Res. Logist. 41 579-585
  • [8] Epstein L(2000)New worst-case results for the bin packing problem Oper. Res. Lett. 26 217-222
  • [9] Levin A(undefined)Linear time approximation algorithms for bin packing undefined undefined undefined-undefined
  • [10] Fernandez de la Vega W(undefined)undefined undefined undefined undefined-undefined