Volterra operators and Hankel forms on Bergman spaces of Dirichlet series

被引:1
|
作者
H. Bommier-Hato
机构
[1] University of Vienna,Faculty of Mathematics
来源
关键词
Volterra operator; Dirichlet series; Hankel forms; Primary 31B10; 32A36; Secondary 30B50; 30H20;
D O I
暂无
中图分类号
学科分类号
摘要
For a Dirichlet series g, we study the Volterra operator Tgf(s)=-∫s+∞f(w)g′(w)dw,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g f(s)=-\int ^{+\infty }_{s} f(w)g'(w)dw,$$\end{document} acting on a class of weighted Hilbert spaces Hw2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}^{2}_{w}}$$\end{document} of Dirichlet series. We obtain sufficient / necessary conditions for Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} to be bounded (resp. compact), involving BMO and Bloch type spaces on some half-plane. We also investigate the membership of Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} in Schatten classes. Moreover, we show that if Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} is bounded, then g is in Hwp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}^p_w$$\end{document}, the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-version of Hw2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}^{2}_{w}}$$\end{document}, for every 0<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<\infty $$\end{document}. We also relate the boundedness of Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} to the boundedness of a multiplicative Hankel form of symbol g, and the membership of g in the dual of Hw1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}^1_w$$\end{document}.
引用
收藏
页码:247 / 289
页数:42
相关论文
共 50 条
  • [41] HANKEL-OPERATORS BETWEEN WEIGHTED BERGMAN SPACES
    JANSON, S
    ARKIV FOR MATEMATIK, 1988, 26 (02): : 205 - 219
  • [42] COMPACT HANKEL-OPERATORS ON HARMONIC BERGMAN SPACES
    JOVOVIC, M
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 22 (03) : 295 - 304
  • [43] Schatten class Hankel operators on exponential Bergman spaces
    Zhicheng Zeng
    Xiaofeng Wang
    Zhangjian Hu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [44] On Hankel operators between Bergman spaces on the unit ball
    Bonami, A
    Luo, L
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (03): : 815 - 828
  • [45] Hankel Operators on Weighted Bergman Spaces and Norm Ideals
    Quanlei Fang
    Jingbo Xia
    Complex Analysis and Operator Theory, 2018, 12 : 629 - 668
  • [46] HANKEL-OPERATORS ON BERGMAN SPACES WITH CHANGE OF WEIGHT
    JANSON, S
    MATHEMATICA SCANDINAVICA, 1992, 71 (02) : 267 - 276
  • [47] Compact Hankel operators on weighted harmonic Bergman spaces
    Stroethoff, K
    GLASGOW MATHEMATICAL JOURNAL, 1997, 39 : 77 - 84
  • [48] Compact Hankel Operators on Generalized Bergman Spaces of the Polydisc
    Le, Trieu
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (03) : 425 - 438
  • [49] On generalized Toeplitz and little Hankel operators on Bergman spaces
    Taskinen, Jari
    Virtanen, Jani
    ARCHIV DER MATHEMATIK, 2018, 110 (02) : 155 - 166
  • [50] CONTRACTIVE INEQUALITIES FOR BERGMAN SPACES AND MULTIPLICATIVE HANKEL FORMS
    Bayart, Frederic
    Brevig, Ole Fredrik
    Haimi, Antti
    Ortega-Cerda, Joaquim
    Perfekt, Karl-Mikael
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (01) : 681 - 707