Volterra operators and Hankel forms on Bergman spaces of Dirichlet series

被引:1
作者
H. Bommier-Hato
机构
[1] University of Vienna,Faculty of Mathematics
来源
Monatshefte für Mathematik | 2020年 / 193卷
关键词
Volterra operator; Dirichlet series; Hankel forms; Primary 31B10; 32A36; Secondary 30B50; 30H20;
D O I
暂无
中图分类号
学科分类号
摘要
For a Dirichlet series g, we study the Volterra operator Tgf(s)=-∫s+∞f(w)g′(w)dw,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g f(s)=-\int ^{+\infty }_{s} f(w)g'(w)dw,$$\end{document} acting on a class of weighted Hilbert spaces Hw2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}^{2}_{w}}$$\end{document} of Dirichlet series. We obtain sufficient / necessary conditions for Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} to be bounded (resp. compact), involving BMO and Bloch type spaces on some half-plane. We also investigate the membership of Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} in Schatten classes. Moreover, we show that if Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} is bounded, then g is in Hwp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}^p_w$$\end{document}, the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-version of Hw2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}^{2}_{w}}$$\end{document}, for every 0<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<\infty $$\end{document}. We also relate the boundedness of Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} to the boundedness of a multiplicative Hankel form of symbol g, and the membership of g in the dual of Hw1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}^1_w$$\end{document}.
引用
收藏
页码:247 / 289
页数:42
相关论文
共 50 条
  • [31] Essential norms of integration operators on weighted Bergman spaces
    Miihkinen, Santeri
    Nieminen, Pekka J.
    Xu, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) : 229 - 243
  • [32] Integral quadratic forms and Dirichlet series
    B. van Asch
    F. van der Blij
    The Ramanujan Journal, 2010, 22 : 1 - 10
  • [33] On Hankel Forms of Higher Weights: The Case of Hardy Spaces
    Sundhall, Marcus
    Tchoundja, Edgar
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (02): : 439 - 455
  • [34] Some Banach spaces of Dirichlet series
    Bailleul, Maxime
    Lefevre, Pascal
    STUDIA MATHEMATICA, 2015, 226 (01) : 17 - 55
  • [35] Weak Product Spaces of Dirichlet Series
    Brevig, Ole Fredrik
    Perfekt, Karl-Mikael
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 86 (04) : 453 - 473
  • [36] Weak Product Spaces of Dirichlet Series
    Ole Fredrik Brevig
    Karl-Mikael Perfekt
    Integral Equations and Operator Theory, 2016, 86 : 453 - 473
  • [37] Multipliers of the Hilbert spaces of Dirichlet series
    Sahu, Chaman Kumar
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 323 - 334
  • [38] Interpolation of Hardy spaces of Dirichlet series
    Bayart, Frederic
    Mastylo, Mieczyslaw
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (03) : 786 - 805
  • [39] Banach spaces of general Dirichlet series
    Choi, Yun Sung
    Kim, Un Young
    Maestre, Manuel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) : 839 - 856
  • [40] On composition operators on the Wiener algebra of Dirichlet series
    Li, Daniel
    Queffelec, Herve
    Rodriguez-Piazza, Luis
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 188