Volterra operators and Hankel forms on Bergman spaces of Dirichlet series

被引:1
作者
H. Bommier-Hato
机构
[1] University of Vienna,Faculty of Mathematics
来源
Monatshefte für Mathematik | 2020年 / 193卷
关键词
Volterra operator; Dirichlet series; Hankel forms; Primary 31B10; 32A36; Secondary 30B50; 30H20;
D O I
暂无
中图分类号
学科分类号
摘要
For a Dirichlet series g, we study the Volterra operator Tgf(s)=-∫s+∞f(w)g′(w)dw,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g f(s)=-\int ^{+\infty }_{s} f(w)g'(w)dw,$$\end{document} acting on a class of weighted Hilbert spaces Hw2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}^{2}_{w}}$$\end{document} of Dirichlet series. We obtain sufficient / necessary conditions for Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} to be bounded (resp. compact), involving BMO and Bloch type spaces on some half-plane. We also investigate the membership of Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} in Schatten classes. Moreover, we show that if Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} is bounded, then g is in Hwp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}^p_w$$\end{document}, the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-version of Hw2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}^{2}_{w}}$$\end{document}, for every 0<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<\infty $$\end{document}. We also relate the boundedness of Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document} to the boundedness of a multiplicative Hankel form of symbol g, and the membership of g in the dual of Hw1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}^1_w$$\end{document}.
引用
收藏
页码:247 / 289
页数:42
相关论文
共 50 条
  • [1] Volterra operators and Hankel forms on Bergman spaces of Dirichlet series
    Bommier-Hato, H.
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (02): : 247 - 289
  • [2] Composition operators on weighted Bergman spaces of Dirichlet series
    Bailleul, Maxime
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (01) : 340 - 363
  • [3] Composition operators over weighted Bergman spaces of Dirichlet series
    Wang, Maofa
    He, Min
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (05) : 795 - 815
  • [4] Iteration of composition operators on small Bergman spaces of Dirichlet series
    Zhao, Jing
    CONCRETE OPERATORS, 2018, 5 (01): : 24 - 34
  • [5] COMPOSITION OPERATORS ON BOHR-BERGMAN SPACES OF DIRICHLET SERIES
    Bailleul, Maxime
    Brevig, Ole Fredrik
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 129 - 142
  • [6] Generalized Counting Functions and Composition Operators on Weighted Bergman Spaces of Dirichlet Series
    He, Min
    Wang, Maofa
    Chen, Jiale
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (02) : 291 - 309
  • [7] CONTRACTIVE INEQUALITIES FOR BERGMAN SPACES AND MULTIPLICATIVE HANKEL FORMS
    Bayart, Frederic
    Brevig, Ole Fredrik
    Haimi, Antti
    Ortega-Cerda, Joaquim
    Perfekt, Karl-Mikael
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (01) : 681 - 707
  • [8] Volterra operators between Hardy spaces of vector-valued Dirichlet series
    Chen, Jiale
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025, 68 (01): : 286 - 300
  • [9] Integration Operators on Spaces of Dirichlet Series
    Jia Le Chen
    Mao Fa Wang
    Acta Mathematica Sinica, English Series, 2023, 39 : 1919 - 1938
  • [10] Integration Operators on Spaces of Dirichlet Series
    Chen, Jia Le
    Wang, Mao Fa
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (10) : 1919 - 1938