Convergence of mock Fourier series

被引:2
|
作者
Robert S. Strichartz
机构
[1] Cornell University,Mathematics Department Malott Hall
来源
Journal d’Analyse Mathématique | 2006年 / 99卷
关键词
Uniform Convergence; Iterate Function System; Approximate Identity; Sierpinski Gasket; Discrete Subset;
D O I
暂无
中图分类号
学科分类号
摘要
For certain Cantor measures μ on ℝn, it was shown by Jorgensen and Pedersen that there exists an orthonormal basis of exponentialse2πiγ·x for λεΛ. a discrete subset of ℝn called aspectrum for μ. For anyL1 functionf, we define coefficientscγ(f)=∝f(y)e−2πiγiydμ(y) and form the Mock Fourier series ∑λ∈Λcλ(f)e2πiλ·x. There is a natural sequence of finite subsets Λn increasing to Λ asn→∞, and we define the partial sums of the Mock Fourier series by\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$s_n (f)(x) = \sum\limits_{\lambda \in \Lambda _n } {c_n (f)e^{2\pi i\lambda \cdot x} } .$$ \end{document}
引用
收藏
页码:333 / 353
页数:20
相关论文
共 50 条
  • [1] Mock Fourier series and transforms associated with certain Cantor measures
    Robert S. Strichartz
    Journal d’Analyse Mathématique, 2000, 81 : 209 - 238
  • [2] Uniform convergence of Fourier-Jacobi series
    Kvernadze, G
    JOURNAL OF APPROXIMATION THEORY, 2002, 117 (02) : 207 - 228
  • [3] On the uniform convergence of Walsh-Fourier series
    Goginava, U
    ACTA MATHEMATICA HUNGARICA, 2001, 93 (1-2) : 59 - 70
  • [4] On the Uniform Convergence of Walsh-Fourier Series
    U. Goginava
    Acta Mathematica Hungarica, 2001, 93 : 59 - 70
  • [5] ON BEHAVIOR OF FOURIER COEFFICIENTS AND UNIFORM CONVERGENCE OF FOURIER SERIES IN THE HAAR SYSTEM
    Grigoryan, M. G.
    Kobelyan, A. Kh
    ADVANCES IN OPERATOR THEORY, 2018, 3 (04): : 781 - 793
  • [6] On Uniform Convergence of Transformations of Fourier Series on Multiplicative Systems
    Agafonova, N. Y.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2009, 9 (01): : 3 - 8
  • [7] Uniform Convergence of Double Vilenkin-Fourier Series
    Baramidze, L.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2019, 54 (03): : 147 - 156
  • [8] CONVERGENCE IN NORM OF LOGARITHMIC MEANS OF MULTIPLE FOURIER SERIES
    Goginava, Ushangi
    Gogoladze, Larry
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03): : 859 - 867
  • [9] Uniform Convergence of Double Vilenkin-Fourier Series
    L. Baramidze
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2019, 54 : 147 - 156
  • [10] On the uniform convergence of negative order Cesaro means of Fourier series
    Grigoryan, M. G.
    Galoyan, L. N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) : 554 - 567