Boundary Behavior of Optimal Polynomial Approximants

被引:0
|
作者
Catherine Bénéteau
Myrto Manolaki
Daniel Seco
机构
[1] University of South Florida,Department of Mathematics
[2] University College Dublin,School of Mathematics and Statistics
[3] Universidad Carlos III de Madrid and Instituto de Ciencias Matemáticas,Departamento de Matemáticas
来源
Constructive Approximation | 2021年 / 54卷
关键词
Reproducing kernel Hilbert spaces; Optimal approximation; Hardy spaces; Bergman spaces; Primary 30B30; Secondary 30E10; 30H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide an efficient method for computing the Taylor coefficients of 1-pnf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-p_n f$$\end{document}, where pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n$$\end{document} denotes the optimal polynomial approximant of degree n to 1/f in a Hilbert space Hω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2_\omega $$\end{document} of analytic functions over the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}, and f is a polynomial of degree d with d simple zeros. As a consequence, we show that in many of the spaces Hω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2_\omega $$\end{document}, the sequence {1-pnf}n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1-p_nf\}_{n\in \mathbb {N}}$$\end{document} is uniformly bounded on the closed unit disc and, if f has no zeros inside D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}, the sequence {1-pnf}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1-p_nf \}$$\end{document} converges uniformly to 0 on compact subsets of the complement of the zeros of f in D¯,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathbb {D}}, $$\end{document} and we obtain precise estimates on the rate of convergence on compacta. We also obtain the precise constant in the rate of decay of the norm of 1-pnf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 - p_n f$$\end{document} in the previously unknown case of a function with a single zero of multiplicity greater than 1, when the weights are given by ωk=(k+1)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _k = (k+1)^{\alpha }$$\end{document} for α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \le 1$$\end{document}.
引用
收藏
页码:157 / 183
页数:26
相关论文
共 10 条
  • [1] Boundary Behavior of Optimal Polynomial Approximants
    Beneteau, Catherine
    Manolaki, Myrto
    Seco, Daniel
    CONSTRUCTIVE APPROXIMATION, 2021, 54 (01) : 157 - 183
  • [2] Simultaneous zero-free approximation and universal optimal polynomial approximants
    Beneteau, Catherine
    Ivrii, Oleg
    Manolaki, Myrto
    Seco, Daniel
    JOURNAL OF APPROXIMATION THEORY, 2020, 256
  • [3] Zeros of optimal polynomial approximants: Jacobi matrices and Jentzsch-type theorems
    Beneteau, Catherine
    Khavinson, Dmitry
    Liaw, Constanze
    Seco, Daniel
    Simanek, Brian
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (02) : 607 - 642
  • [4] Some problems on optimal approximants
    Seco, Daniel
    RECENT PROGRESS ON OPERATOR THEORY AND APPROXIMATION IN SPACES OF ANALYTIC FUNCTIONS, 2016, 679 : 193 - 205
  • [5] Global optimal polynomial approximation for parametric problems in power systems
    Yongzhi ZHOU
    Hao WU
    Chenghong GU
    Yonghua SONG
    Journal of Modern Power Systems and Clean Energy, 2019, 7 (03) : 500 - 511
  • [6] Global optimal polynomial approximation for parametric problems in power systems
    Zhou, Yongzhi
    Wu, Hao
    Gu, Chenghong
    Song, Yonghua
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2019, 7 (03) : 500 - 511
  • [7] A general framework for the optimal approximation of circular arcs by parametric polynomial curves
    Vavpetic, Ales
    Zagar, Emil
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 146 - 158
  • [8] Boundary Behavior of α-Harmonic Functions on the Complement of the Sphere and Hyperplane
    Luks, Tomasz
    POTENTIAL ANALYSIS, 2013, 39 (01) : 29 - 67
  • [9] BAD BOUNDARY BEHAVIOR IN STAR INVARIANT SUBSPACES II
    Hartmann, Andreas
    Ross, William T.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (02) : 467 - 478
  • [10] Boundary Behavior of α-Harmonic Functions on the Complement of the Sphere and Hyperplane
    Tomasz Luks
    Potential Analysis, 2013, 39 : 29 - 67