Infinite horizon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2/H_\infty $$\end{document} optimal control for discrete-time Markov jump systems with (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,u,v$$\end{document})-dependent noise

被引:2
作者
Ting Hou
Weihai Zhang
Hongji Ma
机构
[1] Shandong University of Science and Technology,College of Science
[2] Shandong University of Science and Technology,College of Information and Electrical Engineering
关键词
Infinite horizon; control; Markov jump; Exact detectability; Coupled matrix Riccati equations;
D O I
10.1007/s10898-012-0027-9
中图分类号
学科分类号
摘要
In this paper, an infinite horizon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2/H_\infty $$\end{document} control problem is addressed for a broad class of discrete-time Markov jump systems with (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,u,v$$\end{document})-dependent noises. First of all, under the condition of exact detectability, the stochastic Popov–Belevich–Hautus (PBH) criterion is utilized to establish an extended Lyapunov theorem for a generalized Lyapunov equation. Further, a necessary and sufficient condition is presented for the existence of state-feedback \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2/H_\infty $$\end{document} optimal controller on the basis of two coupled matrix Riccati equations, which may be solved by a backward iterative algorithm. A numerical example with simulations is supplied to illustrate the proposed theoretical results.
引用
收藏
页码:1245 / 1262
页数:17
相关论文
共 47 条
[1]  
Kalman RE(1960)A new approach to linear filtering and prediction problems ASME J. Basic Eng. 82 34-45
[2]  
Zhang W(2008)Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion IEEE Trans. Autom. Control 53 1630-1642
[3]  
Zhang H(2010)Robust IEEE Trans. Autom. Control 55 1716-1722
[4]  
Chen BS(1981) finite horizon control for a class of stochastic nonlinear time-varying systems subject to sensor and actuator saturations IEEE Trans. Autom. Control 26 301-320
[5]  
Wang Z(1989)Feedback and optimal sensitivity: Model reference transformation, multiplicative seminorms, and approximative inverses IEEE Trans. Autom. Control 34 831-847
[6]  
Ho DWC(1994)State-space solutions to standard IEEE Trans. Autom. Control 39 69-82
[7]  
Dong H(1991) and IEEE Trans. Autom. Control 36 824-837
[8]  
Gao H(1998) problems SIAM J. Control Optim. 36 1504-1538
[9]  
Zames G(2006)A Nash game approach to mixed SIAM J. Control Optim. 44 1973-1991
[10]  
Doyle JC(2004) control IEEE Trans. Autom. Control 49 349-360