On the second-order regularity of solutions to the parabolic p-Laplace equation
被引:0
|
作者:
Yawen Feng
论文数: 0引用数: 0
h-index: 0
机构:University of Jyväskylä,Department of Mathematics and Statistics
Yawen Feng
Mikko Parviainen
论文数: 0引用数: 0
h-index: 0
机构:University of Jyväskylä,Department of Mathematics and Statistics
Mikko Parviainen
Saara Sarsa
论文数: 0引用数: 0
h-index: 0
机构:University of Jyväskylä,Department of Mathematics and Statistics
Saara Sarsa
机构:
[1] University of Jyväskylä,Department of Mathematics and Statistics
[2] Beihang University,School of Mathematical Science
[3] University of Helsinki,Department of Mathematics and Statistics
来源:
Journal of Evolution Equations
|
2022年
/
22卷
关键词:
-parabolic functions;
Weak solutions;
Fundamental inequality;
Sobolev regularity;
Time derivative;
35K65;
35K67;
35B65;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace equation. For any p-parabolic function u, we show that D(Dup-2+s2Du)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D(\left| Du\right| ^{\frac{p-2+s}{2}}Du)$$\end{document} exists as a function and belongs to Lloc2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{2}_{\text {loc}}$$\end{document} with s>-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s>-1$$\end{document} and 1<p<∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1<p<\infty $$\end{document}. The range of s is sharp.
机构:
Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
Beihang Univ, Sch Math Sci, Shahe Higher Educ Pk South Third St 9, Beijing 102206, Peoples R ChinaUniv Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
Feng, Yawen
Parviainen, Mikko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, FinlandUniv Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
Parviainen, Mikko
Sarsa, Saara
论文数: 0引用数: 0
h-index: 0
机构:
Univ Helsinki, Dept Math & Stat, POB 68,Pietati Kalmin Katu 5, Helsinki 00014, FinlandUniv Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
机构:
Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, PolandUniv Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
Karppinen, Arttu
Sarsa, Saara
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, FinlandUniv Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland