A unified Lyapunov-like characterization for predefined time synchronization of nonlinear systems

被引:3
作者
Zhang, Mengjiao [1 ]
Zang, Hongyan [1 ]
Shi, Zhudong [1 ]
机构
[1] Univ Sci & Technol Beijing, Math & Phys Sch, Beijing 100083, Peoples R China
关键词
Lyapunov-like characterization; Predefined time stability; Chaos synchronization and control; Sliding mode control; Stability of nonlinear systems; SLIDING-MODE CONTROL; STABILIZATION; STABILITY;
D O I
10.1007/s11071-024-09506-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we present a new design for predefined time stable Lyapunov-like characterizations. Our approach combines several previously proposed Lyapunov characterizations and provides a unified idea for designing predefined time stable dynamic systems, based on which the framework of the predefined time sliding mode controller (PTSMC) is designed. First, we define Class-Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ Class }-\mathcal {Z}$$\end{document} functions and use them to design a unified form of Lyapunov-like characterization; moreover, we prove that it satisfies the predefined time stability by using the comparison principle. Second, a class of predefined time stable dynamic systems is developed based on this constructed function, and its predefined time stability properties are confirmed by Lyapunov theory. Finally, the dynamic system is used to construct a sliding mode controller, and a universal framework for PTSMCs is designed. By applying the above to chaos synchronization, numerical simulations demonstrate the universality and the feasibility of this unified control framework.
引用
收藏
页码:8775 / 8787
页数:13
相关论文
共 34 条
  • [11] Chattering free full-order sliding-mode control
    Feng, Yong
    Han, Fengling
    Yu, Xinghuo
    [J]. AUTOMATICA, 2014, 50 (04) : 1310 - 1314
  • [12] On nonsingular terminal sliding-mode control of nonlinear systems
    Feng, Yong
    Yu, Xinghuo
    Han, Fengling
    [J]. AUTOMATICA, 2013, 49 (06) : 1715 - 1722
  • [13] On optimal predefined-time stabilization
    Jimenez-Rodriguez, E.
    Sanchez-Torres, J. D.
    Loukianov, A. G.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2017, 27 (17) : 3620 - 3642
  • [14] A Lyapunov-Like Characterization of Predefined-Time Stability
    Jimenez-Rodriguez, Esteban
    Munoz-Vazquez, Aldo Jonathan
    Sanchez-Torres, Juan Diego
    Defoort, Michael
    Loukianov, Alexander G.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (11) : 4922 - 4927
  • [15] Variable Structure Predefined-Time Stabilization of Second-Order Systems
    Jimenez-Rodriguez, Esteban
    Diego Sanchez-Torres, Juan
    Gomez-Gutierrez, David
    Loukinanov, Alexander G.
    [J]. ASIAN JOURNAL OF CONTROL, 2019, 21 (03) : 1179 - 1188
  • [16] A Note on Predefined-Time Stability
    Jimenez-Rodriguez, Esteban
    Jonathan Munoz-Vazquez, Aldo
    Diego Sanchez-Torres, Juan
    Loukianov, Alexander G.
    [J]. IFAC PAPERSONLINE, 2018, 51 (13): : 520 - 525
  • [17] Single-channel predefined-time synchronisation of chaotic systems
    Jonathan Munoz-Vazquez, Aldo
    Diego Sanchez-Torres, Juan
    Alberto Anguiano-Gijon, Carlos
    [J]. ASIAN JOURNAL OF CONTROL, 2021, 23 (01) : 190 - 198
  • [18] Predefined-Time Robust Stabilization of Robotic Manipulators
    Jonathan Munoz-Vazquez, Aldo
    Diego Sanchez-Torres, Juan
    Jimenez-Rodriguez, Esteban
    Loukianov, Alexander G.
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2019, 24 (03) : 1033 - 1040
  • [19] A Unified Chaotic System with Various Coexisting Attractors
    Lai, Qiang
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (01):
  • [20] Predefined-Time Polynomial-Function-Based Synchronization of Chaotic Systems via a Novel Sliding Mode Control
    Li, Qiaoping
    Yue, Chao
    [J]. IEEE ACCESS, 2020, 8 (08): : 162149 - 162162