Covers and partial transversals of Latin squares

被引:0
|
作者
Darcy Best
Trent Marbach
Rebecca J. Stones
Ian M. Wanless
机构
[1] Monash University,School of Mathematics
[2] Nankai University,Nankai
来源
Designs, Codes and Cryptography | 2019年 / 87卷
关键词
Latin square; Transversal; Covers; 05B15;
D O I
暂无
中图分类号
学科分类号
摘要
We define a cover of a Latin square to be a set of entries that includes at least one representative of each row, column and symbol. A cover is minimal if it does not contain any smaller cover. A partial transversal is a set of entries that includes at most one representative of each row, column and symbol. A partial transversal is maximal if it is not contained in any larger partial transversal. We explore the relationship between covers and partial transversals. We prove the following: (1) The minimum size of a cover in a Latin square of order n is n+a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+a$$\end{document} if and only if the maximum size of a partial transversal is either n-2a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2a$$\end{document} or n-2a+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2a+1$$\end{document}. (2) A minimal cover in a Latin square of order n has size at most μn=3(n+1/2-n+1/4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _n=3(n+1/2-\sqrt{n+1/4})$$\end{document}. (3) There are infinitely many orders n for which there exists a Latin square having a minimal cover of every size from n to μn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _n$$\end{document}. (4) Every Latin square of order n has a minimal cover of a size which is asymptotically equal to μn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _n$$\end{document}. (5) If 1⩽k⩽n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\leqslant k\leqslant n/2$$\end{document} and n⩾5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 5$$\end{document} then there is a Latin square of order n with a maximal partial transversal of size n-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-k$$\end{document}. (6) For any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, asymptotically almost all Latin squares have no maximal partial transversal of size less than n-n2/3+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-n^{2/3+\varepsilon }$$\end{document}.
引用
收藏
页码:1109 / 1136
页数:27
相关论文
共 50 条
  • [21] Monogamous latin squares
    Danziger, Peter
    Wanless, Ian M.
    Webb, Bridget S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 796 - 807
  • [22] Indivisible partitions of latin squares
    Egan, Judith
    Wanless, Ian M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 402 - 417
  • [23] A generalization of plexes of Latin squares
    Pula, Kyle
    DISCRETE MATHEMATICS, 2011, 311 (8-9) : 577 - 581
  • [24] ON THE CHROMATIC INDEX OF LATIN SQUARES
    Cavenagh, Nicholas J.
    Kuhl, Jaromy
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2015, 10 (02) : 22 - 30
  • [25] Indivisible plexes in latin squares
    Bryant, Darryn
    Egan, Judith
    Maenhaut, Barbara
    Wanless, Ian M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2009, 52 (01) : 93 - 105
  • [26] Permanents and Determinants of Latin Squares
    Donovan, Diane
    Johnson, Kenneth
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (03) : 132 - 148
  • [27] Indivisible plexes in latin squares
    Darryn Bryant
    Judith Egan
    Barbara Maenhaut
    Ian M. Wanless
    Designs, Codes and Cryptography, 2009, 52 : 93 - 105
  • [28] Completing Partial Latin Squares with Blocks of Non-empty Cells
    Jaromy Kuhl
    Michael W. Schroeder
    Graphs and Combinatorics, 2016, 32 : 241 - 256
  • [29] PARTIAL LATIN SQUARES HAVING A SANTILLI'S AUTOTOPISM IN THEIR AUTOTOPISM GROUPS
    Falcon, R. M.
    Nunez, J.
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2007, 5 (01) : 19 - 32
  • [30] Completing partial Latin squares with one filled row, column and symbol
    Casselgren, Carl Johan
    Haggkvist, Roland
    DISCRETE MATHEMATICS, 2013, 313 (09) : 1011 - 1017