The smallest Randic index for trees

被引:0
作者
Li Bingjun [1 ,2 ]
Liu Weijun [2 ]
机构
[1] Hunan Inst Humanities Sci & Technol, Dept Math, Loudi City 417000, Hunan, Peoples R China
[2] Cent S Univ, Coll Math, Changsha 410000, Hunan, Peoples R China
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2013年 / 123卷 / 02期
关键词
External graph; tree; the general Randic index; GRAPHS;
D O I
10.1007/s12044-013-0126-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The general Randic index R-alpha(G) is the sum of the weight d(u)d(v)(alpha) over all edges uv of a graph G, where alpha is a real number and d(u) is the degree of the vertex u of G. In this paper, for any real number alpha not equal 0, the first three minimum general Randic indices among trees are determined, and the corresponding extremal trees are characterized.
引用
收藏
页码:167 / 175
页数:9
相关论文
共 7 条
[1]  
BALABAN AT, 1983, TOP CURR CHEM, V114, P21
[2]  
Bollobás B, 1998, ARS COMBINATORIA, V50, P225
[3]   Trees with second minimum general Randić index for α > 0 [J].
Chang R. ;
Liu G. .
Journal of Applied Mathematics and Computing, 2009, 30 (1-2) :143-149
[4]  
Hu YM, 2004, MATCH-COMMUN MATH CO, P119
[5]  
Li X., 2006, MATH CHEM MONOGRAPHS, V31, P89
[6]   CHARACTERIZATION OF MOLECULAR BRANCHING [J].
RANDIC, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (23) :6609-6615
[7]  
Wu B, 2005, MATCH-COMMUN MATH CO, V54, P455