Online Portfolio Selection with Long-Short Term Forecasting

被引:0
作者
Li R. [1 ]
Liu J. [1 ]
机构
[1] School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an
基金
中国国家自然科学基金;
关键词
Conditional value-at-risk; Long-short term forecasting; Online portfolio selection;
D O I
10.1007/s43069-022-00169-1
中图分类号
学科分类号
摘要
This work considers an online portfolio selection problem with reward and risk criteria. We use short-term historical data to forecast the reward term, reflecting the current market trend. We use conditional value-at-risk estimated by long-term historical data to measure the investment risk implied in the market. We reformulate the online portfolio selection model with long-short term forecasting as a linear programming problem. Numerical experiments in various data sets examine the superior out-of-sample performance of the proposed model. © 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
引用
收藏
相关论文
共 37 条
[1]  
Markowitz H., Portfolio selection, J Financ, 7, 1, pp. 77-91, (1952)
[2]  
Kelly J.L., A new interpretation of information rate, Bell Syst Tech J, 35, 4, pp. 917-926, (1956)
[3]  
Cover T., Universal portfolios, Math Financ, 1, 1, pp. 1-29, (1991)
[4]  
Gyorfi L., Lugosi G., Udina F., Nonparametric kernel-based sequential investment strategies, Math Financ, 16, 2, pp. 337-357, (2006)
[5]  
Agarwal A., Hazan E., Kale S., Schapire R.E., Algorithms for portfolio management based on the Newton method, Proceedings of the 23Rd International Conference on Machine Learning, pp. 9-16, (2006)
[6]  
Li B., Zhao P., Hoi S., Gopalkrishnan V., PAMR: passive aggressive mean reversion strategy for portfolio selection, Mach Learn, 87, 2, pp. 221-258, (2012)
[7]  
Huang D., Zhou J., Li B., Hoi S., Zhou S., Robust median reversion strategy for online portfolio selection, IEEE Trans Knowl Data Eng, 28, 9, pp. 2480-2493, (2016)
[8]  
Lai Z., Yang P., Fang L., Wu X., Short-term sparse portfolio optimization based on alternating direction method of multipliers, J Mach Learn Res, 19, 1, pp. 2547-2574, (2018)
[9]  
Zhang Y., Lin H., Yang X., Long W., Combining expert weights for online portfolio selection based on the gradient descent algorithm, Knowl-Based Syst, 234, (2021)
[10]  
Li B., Hoi S., Online portfolio selection: a survey, ACM Comput Surv, 46, 3, pp. 1-36, (2014)