A point mass proposal method for Bayesian state-space model fitting
被引:0
|
作者:
Mary Llewellyn
论文数: 0引用数: 0
h-index: 0
机构:University of Edinburgh,School of Mathematics
Mary Llewellyn
Ruth King
论文数: 0引用数: 0
h-index: 0
机构:University of Edinburgh,School of Mathematics
Ruth King
Víctor Elvira
论文数: 0引用数: 0
h-index: 0
机构:University of Edinburgh,School of Mathematics
Víctor Elvira
Gordon Ross
论文数: 0引用数: 0
h-index: 0
机构:University of Edinburgh,School of Mathematics
Gordon Ross
机构:
[1] University of Edinburgh,School of Mathematics
来源:
Statistics and Computing
|
2023年
/
33卷
关键词:
Bayesian methods;
Data augmentation;
Hidden Markov models;
Markov chain Monte Carlo (MCMC);
State-space models;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
State-space models (SSMs) are commonly used to model time series data where the observations depend on an unobserved latent process. However, inference on the model parameters of an SSM can be challenging, especially when the likelihood of the data given the parameters is not available in closed-form. One approach is to jointly sample the latent states and model parameters via Markov chain Monte Carlo (MCMC) and/or sequential Monte Carlo approximation. These methods can be inefficient, mixing poorly when there are many highly correlated latent states or parameters, or when there is a high rate of sample impoverishment in the sequential Monte Carlo approximations. We propose a novel block proposal distribution for Metropolis-within-Gibbs sampling on the joint latent state and parameter space. The proposal distribution is informed by a deterministic hidden Markov model (HMM), defined such that the usual theoretical guarantees of MCMC algorithms apply. We discuss how the HMMs are constructed, the generality of the approach arising from the tuning parameters, and how these tuning parameters can be chosen efficiently in practice. We demonstrate that the proposed algorithm using HMM approximations provides an efficient alternative method for fitting state-space models, even for those that exhibit near-chaotic behavior.
机构:
China Construct Eighth Engn Div Co Ltd, Shanghai 200082, Peoples R China
Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USABeijing Univ Civil Engn & Architecture, Sch Civil & Transportat Engn, Beijing 100044, Peoples R China
机构:
Univ Calif Irvine, Dept Stat, 2226 Donald Bren Hall, Irvine, CA 92697 USAUniv Calif Irvine, Dept Stat, 2226 Donald Bren Hall, Irvine, CA 92697 USA
Gao, Xu
Shen, Weining
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Stat, 2206 Donald Bren Hall, Irvine, CA 92697 USAUniv Calif Irvine, Dept Stat, 2226 Donald Bren Hall, Irvine, CA 92697 USA
Shen, Weining
Shahbaba, Babak
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Stat, 2224 Donald Bren Hall, Irvine, CA 92697 USAUniv Calif Irvine, Dept Stat, 2226 Donald Bren Hall, Irvine, CA 92697 USA
Shahbaba, Babak
Fortin, Norbert J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Neurobiol & Behav, 106 Bonney Res Lab Bldg, Irvine, CA 92697 USAUniv Calif Irvine, Dept Stat, 2226 Donald Bren Hall, Irvine, CA 92697 USA
Fortin, Norbert J.
Ombao, Hernando
论文数: 0引用数: 0
h-index: 0
机构:
4700 King Abdullah Univ Sci & Technol KAUST Thuwa, Stat Program, Thuwal 239556900, Saudi ArabiaUniv Calif Irvine, Dept Stat, 2226 Donald Bren Hall, Irvine, CA 92697 USA
机构:
Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and AstronauticsJiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics
Shuwei PANG
Qiuhong LI
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and AstronauticsJiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics
Qiuhong LI
Haibo ZHANG
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and AstronauticsJiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics
机构:
Michigan Dept Nat Resources, Inst Fisheries Res, Ann Arbor, MI 48109 USA
Univ Michigan, Ann Arbor, MI 48109 USAMichigan Dept Nat Resources, Inst Fisheries Res, Ann Arbor, MI 48109 USA