Polynomial Tau Functions of Symplectic KP and Multi-component Symplectic KP Hierarchies

被引:0
作者
Fang Huang
Chuanzhong Li
机构
[1] Henan University,School of Mathematics and Statistics
[2] Shandong University of Science and Technology,College of Mathematics and Systems Science
来源
Annals of Combinatorics | 2022年 / 26卷
关键词
Symplectic Schur functions; Polynomial tau-functions; Symplectic KP hierarchy; Multi-component SKP hierarchy; 37K05; 37K10; 37K20; 17B65; 17B67;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that a zero mode of an appropriate combinatorial generating function is a polynomial tau-function of a form of symplectic KP (SKP) hierarchy and extend it to the multi-component SKP hierarchy. Moreover, we write the polynomial tau-function of SKP hierarchy as determinant form in terms of the Vandermonde-like identity.
引用
收藏
页码:593 / 611
页数:18
相关论文
共 21 条
  • [1] Schur I(1911)ber die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrocheme lineare Substitionen J. Reine Angew. Math. 139 155-250
  • [2] Stembridge JR(1989)Shifted tableaux and the projective representations of symmetric groups Adv. in Math. 74 87-134
  • [3] Sato M(1981)Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold RIMS Kokyuroku 439 30-46
  • [4] Kac VG(2018)Equivalence of formulations of the MKP hierarchy and its polynomial tau-functions Jpn. J. Math. 13 235-271
  • [5] van de Leur JW(2019)Multiparameter Schur Q-functions are solutions of the BKP hierarchy Symmetry Integrability Geom. Methods Appl. 15 065-3812
  • [6] Rozhkovskaya N(2021)Johan van de Leur, Polynomial tau-functions of the KP, BKP, and the J. Math. Phys. 62 021702-511
  • [7] Kac VG(1981)-component KP hierarchies J. Phys. Soc. Japan 50 3806-3117
  • [8] Rozhkovskaya N(2022)Operator approach to the Kadomtsev-Petviashvili equation-transformation groups for soliton equations III Physica D 432 133166-442
  • [9] Date E(1987)Multi-component universal character hierarchy and its polynomial tau-functions J. Algebra 107 466-undefined
  • [10] Jimbo M(1996)Young diagrammatic methods for the representation theory of the classical groups of type J. Phys. A: Math. Gen 29 3099-undefined