Equidistribution of Eisenstein Series in the Level Aspect

被引:0
作者
Shin-ya Koyama
机构
[1] Ewha Womans University,The Institute of Mathematical Sciences
来源
Communications in Mathematical Physics | 2009年 / 289卷
关键词
Eisenstein Series; Cusp Form; Congruence Subgroup; Euler Product; Level Aspect;
D O I
暂无
中图分类号
学科分类号
摘要
We prove an equidistribution property of the Eisenstein series for congruence subgroups as the level goes to infinity. This is an analogy of the phenomenon called quantum ergodicity.
引用
收藏
相关论文
共 18 条
[1]  
Duke W.(2002)The subconvexity problem for Artin Invent. Math. 149 489-577
[2]  
Friedlander J.B.(1994)-functions Ann. Math. 140 161-181
[3]  
Iwaniec H.(2000)Coefficients of Maass forms and the Siegel zero Commun. Math. Phys. 215 477-486
[4]  
Hoffstein J.(2002)Quantum ergodicity of Eisenstein series for arithmetic 3-manifolds Duke Math. J. 114 123-191
[5]  
Lockhart P.(2006)Rankin-Selberg Ann. of Math. 163 165-219
[6]  
Koyama S.(1995)-functions in the level aspect Publ. I.H.E.S. 81 207-237
[7]  
Kowalski E.(1916)Invariant measures and arithmetic quantum unique ergodicity Messenger of Math. 45 81-84
[8]  
Michel P.(1994)Quantum ergodicity of eigenfunctions on Commun. Math. Phys 161 195-213
[9]  
Vanderkam J.(2001)Some formulae in the arithmetic theory of numbers J. Evol. Equ. 1 277-290
[10]  
Lindenstrass E.(2001)The behavior of eigenstates of arithmetic hyperbolic manifolds J. Funct. Anal. 184 419-445