Relatively quantified constraint satisfaction

被引:0
作者
Manuel Bodirsky
Hubie Chen
机构
[1] École Polytechnique,Laboratoire d’informatique (LIX)
[2] Universitat Pompeu Fabra,Departament de Tecnologies de la Informació i les Comunicacions
来源
Constraints | 2009年 / 14卷
关键词
Quantified constraint satisfaction; Computational complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The constraint satisfaction problem (CSP) is a convenient framework for modelling search problems; the CSP involves deciding, given a set of constraints on variables, whether or not there is an assignment to the variables satisfying all of the constraints. This paper is concerned with the more general framework of quantified constraint satisfaction, in which variables can be quantified both universally and existentially. We study the relatively quantified constraint satisfaction problem (RQCSP), in which the values for each individual variable can be arbitrarily restricted. We give a complete complexity classification of the cases of the RQCSP where the types of constraints that may appear are specified by a constraint language.
引用
收藏
页码:3 / 15
页数:12
相关论文
共 50 条
[41]   Algebraic Theory of Promise Constraint Satisfaction Problems, First Steps [J].
Barto, Libor .
FUNDAMENTALS OF COMPUTATION THEORY, FCT 2019, 2019, 11651 :3-17
[42]   The Complexity of Resilience Problems via Valued Constraint Satisfaction Problems [J].
Bodirsky, Manuel ;
Semanisinova, Zaneta ;
Lutz, Carsten .
PROCEEDINGS OF THE 39TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS 2024, 2024,
[43]   Constraint satisfaction and semilinear expansions of addition over the rationals and the reals [J].
Jonsson, Peter ;
Thapper, Johan .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2016, 82 (05) :912-928
[44]   Weighted Constraint Satisfaction Problems with Min-Max Quantifiers [J].
Lee, Jimmy H. M. ;
Mak, Terrence W. K. ;
Yip, Justin .
2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, :769-776
[45]   QUANTIFIED EQUALITY CONSTRAINTS [J].
Bodirsky, Manuel ;
Chen, Hubie .
SIAM JOURNAL ON COMPUTING, 2010, 39 (08) :3682-3699
[46]   The Complexity of Promise Constraint Satisfaction Problem Seen from the Other Side [J].
Asimi, Kristina ;
Barto, Libor ;
Dalmau, Victor .
JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2025, 44 (04) :333-352
[47]   Threshold behaviors of a random constraint satisfaction problem with exact phase transitions [J].
Zhao, Chunyan ;
Zheng, Zhiming .
INFORMATION PROCESSING LETTERS, 2011, 111 (20) :985-988
[48]   Temporal Constraint Satisfaction Problems and Difference Decision Diagrams: a Compilation Map [J].
Fargier, Helene ;
Maris, Frederic ;
Roger, Vincent .
2015 IEEE 27TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2015), 2015, :429-436
[49]   Hard constraint satisfaction problems have hard gaps at location 1 [J].
Jonsson, Peter ;
Krokhin, Andrei ;
Kuivinen, Fredrik .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (38-40) :3856-3874
[50]   Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights [J].
Jonsson, P .
THEORETICAL COMPUTER SCIENCE, 2000, 244 (1-2) :189-203