MonoSAID: Monocular 3D Object Detection based on Scene-Level Adaptive Instance Depth Estimation

被引:0
作者
Chenxing Xia
Wenjun Zhao
Huidan Han
Zhanpeng Tao
Bin Ge
Xiuju Gao
Kuan-Ching Li
Yan Zhang
机构
[1] Anhui University of Science and Technology,College of Computer Science and Engineering
[2] Institute of Energy,College of Electrical and Information Engineering
[3] Hefei Comprehensive National Science Center,Department of Computer Science and Information Engineering
[4] Anhui Purvar Bigdata Technology Co. Ltd,The School of Electronics and Information Engineering
[5] Anyang Cigarette Factory,undefined
[6] China Tobacco Henan Industrial Co.,undefined
[7] Ltd.,undefined
[8] Anhui University of Science and Technology,undefined
[9] Providence University,undefined
[10] Anhui University,undefined
来源
Journal of Intelligent & Robotic Systems | 2024年 / 110卷
关键词
Monocular 3D object detection; Deep learning; Depth estimation; Autonomous driving;
D O I
暂无
中图分类号
学科分类号
摘要
Monocular 3D object detection (Mono3OD) is a challenging yet cost-effective vision task in the fields of autonomous driving and mobile robotics. The lack of reliable depth information makes obtaining accurate 3D positional information extremely difficult. In recent years, center-guided monocular 3D object detectors have directly regressed the absolute depth of the object center based on 2D detection. However, this approach heavily relies on local semantic information, ignoring contextual spatial cues and global-to-local visual correlations. Moreover, visual variations in the scene can lead to inevitable depth prediction errors for objects at different scales. To address these limitations, we propose a Mono3OD framework based on scene-level adaptive instance depth estimation (MonoSAID). Firstly, the continuous depth is discretized into multiple bins, and the width distribution of depth bins is adaptively generated based on scene-level contextual semantic information. Then, by establishing the correlation between global contextual semantic feature information and local semantic features of instances, and using the probability distribution representation of local instance features and the linear combination of bin centers distributions to solve the depth problem. In addition, a multi-scale spatial perception attention module is designed to extract attention maps of various scales through pyramid pooling operations. This design enhances the model’s receptive field and multi-scale spatial perception capabilities, thereby improving its ability to model target objects. We conducted extensive experiments on the KITTI dataset and the Waymo dataset. The results show that MonoSAID can effectively improve the 3D detection accuracy and robustness, and our method achieves state-of-the-art performance.
引用
收藏
相关论文
共 50 条
  • [21] Monocular 3D Object Detection With Sequential Feature Association and Depth Hint Augmentation
    Gao, Tianze
    Pan, Huihui
    Gao, Huijun
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2022, 7 (02): : 240 - 250
  • [22] Revisiting Depth-guided Methods for Monocular 3D Object Detection by Hierarchical Balanced Depth
    Chen, Yi-Rong
    Tseng, Ching-Yu
    Liou, Yi-Syuan
    Wu, Tsung-Han
    Hsu, Winston H.
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [23] Uncertainty Prediction for Monocular 3D Object Detection
    Mun, Junghwan
    Choi, Hyukdoo
    SENSORS, 2023, 23 (12)
  • [24] Monocular 3D object detection for distant objects
    Li, Jiahao
    Han, Xiaohong
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (03) : 33021
  • [25] Multi-Modal Fusion Based on Depth Adaptive Mechanism for 3D Object Detection
    Liu, Zhanwen
    Cheng, Juanru
    Fan, Jin
    Lin, Shan
    Wang, Yang
    Zhao, Xiangmo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 707 - 717
  • [26] Monocular 3D object detection via estimation of paired keypoints for autonomous driving
    Chaofeng Ji
    Guizhong Liu
    Dan Zhao
    Multimedia Tools and Applications, 2022, 81 : 5973 - 5988
  • [27] Monocular 3D object detection via estimation of paired keypoints for autonomous driving
    Ji, Chaofeng
    Liu, Guizhong
    Zhao, Dan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 5973 - 5988
  • [28] MonoEF: Extrinsic Parameter Free Monocular 3D Object Detection
    Zhou, Yunsong
    He, Yuan
    Zhu, Hongzi
    Wang, Cheng
    Li, Hongyang
    Jiang, Qinhong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10114 - 10128
  • [29] One Stage Monocular 3D Object Detection Utilizing Discrete Depth and Orientation Representation
    Haq, Muhamad Amirul
    Ruan, Shanq-Jang
    Shao, Mei-En
    ul Haq, Qazi Mazhar
    Liang, Pei-Jung
    Gao, De-Qin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 21630 - 21640
  • [30] MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods
    Pan, Huihui
    Jia, Yisong
    Wang, Jue
    Sun, Weichao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (03) : 3574 - 3587