Successive Nonparametric Estimation of Conditional Distributions

被引:0
作者
J. Antonio Vargas-Guzmán
Roussos Dimitrakopoulos
机构
[1] The University of Queensland,WH Bryan Mining Geology Research Centre
来源
Mathematical Geology | 2003年 / 35卷
关键词
Non-Gaussian random functions; nonparametric estimation; conditional covariance; cokriging of indicators; indicator simulation;
D O I
暂无
中图分类号
学科分类号
摘要
Spatial characterization of non-Gaussian attributes in earth sciences and engineering commonly requires the estimation of their conditional distribution. The indicator and probability kriging approaches of current nonparametric geostatistics provide approximations for estimating conditional distributions. They do not, however, provide results similar to those in the cumbersome implementation of simultaneous cokriging of indicators. This paper presents a new formulation termed successive cokriging of indicators that avoids the classic simultaneous solution and related computational problems, while obtaining equivalent results to the impractical simultaneous solution of cokriging of indicators. A successive minimization of the estimation variance of probability estimates is performed, as additional data are successively included into the estimation process. In addition, the approach leads to an efficient nonparametric simulation algorithm for non-Gaussian random functions based on residual probabilities.
引用
收藏
页码:39 / 52
页数:13
相关论文
共 50 条
  • [41] Efficiency assessment of Portuguese municipalities using a conditional nonparametric approach
    Jose M. Cordero
    Francisco Pedraja-Chaparro
    Elsa C. Pisaflores
    Cristina Polo
    Journal of Productivity Analysis, 2017, 48 : 1 - 24
  • [42] Some large deviations limit theorems in conditional nonparametric statistics
    Louani, D
    STATISTICS, 1999, 33 (02) : 171 - 196
  • [43] Estimating some characteristics of the conditional distribution in nonparametric functional models
    Ferraty F.
    Laksaci A.
    Vieu P.
    Statistical Inference for Stochastic Processes, 2006, 9 (1) : 47 - 76
  • [44] Efficiency assessment of Portuguese municipalities using a conditional nonparametric approach
    Cordero, Jose M.
    Pedraja-Chaparro, Francisco
    Pisaflores, Elsa C.
    Polo, Cristina
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2017, 48 (01) : 1 - 24
  • [45] Nonparametric estimation for uncertain differential equations
    He, Liu
    Zhu, Yuanguo
    Gu, Yajing
    FUZZY OPTIMIZATION AND DECISION MAKING, 2023, 22 (04) : 697 - 715
  • [46] Understanding nonparametric estimation for clustered data
    Huggins, Richard
    BIOMETRIKA, 2006, 93 (02) : 486 - 489
  • [47] Nonparametric estimation for a stochastic volatility model
    Comte, F.
    Genon-Catalot, V.
    Rozenholc, Y.
    FINANCE AND STOCHASTICS, 2010, 14 (01) : 49 - 80
  • [48] Applied Nonparametric Instrumental Variables Estimation
    Horowitz, Joel L.
    ECONOMETRICA, 2011, 79 (02) : 347 - 394
  • [49] NONPARAMETRIC ESTIMATION OF DYNAMICS OF MONOTONE TRAJECTORIES
    Paul, Debashis
    Peng, Jie
    Burman, Prabir
    ANNALS OF STATISTICS, 2016, 44 (06) : 2401 - 2432
  • [50] Nonparametric estimation of stochastic volatility models
    Renò, R
    ECONOMICS LETTERS, 2006, 90 (03) : 390 - 395