Cycles in hyperbolic manifolds of non-compact type and Fourier coefficients of Siegel modular forms

被引:0
|
作者
Jens Funke
John Millson
机构
[1] Department of Mathematics,
[2] Rawles Hall,undefined
[3] Indiana University,undefined
[4] Bloomington,undefined
[5] ¶IN 47405,undefined
[6] USA. e-mail: jefunke@indiana.edu,undefined
[7] Department of Mathematics,undefined
[8] University of Maryland,undefined
[9] College Park,undefined
[10] MD 20742,undefined
[11] USA. e-mail: jjm@math.umd.edu,undefined
来源
manuscripta mathematica | 2002年 / 107卷
关键词
Mathematics Subject Classification (2000): 11F27, 11F30, 11F46, 11F75;
D O I
暂无
中图分类号
学科分类号
摘要
Using the theta correspondence, we study a lift from (not necessarily rapidly decreasing) closed differential (p−n)-forms on a non-compact arithmetic quotient of hyperbolic p-space to Siegel modular forms of degree n. This generalizes earlier work of Kudla and the second named author (in the case of hyperbolic space). We give a cohomological interpretation of the lift and analyze its Fourier expansion in terms of periods over certain cycles. For Riemann surfaces, i.e., the case p= 2, we obtain a complete description using the theory of Eisenstein cohomology.
引用
收藏
页码:409 / 449
页数:40
相关论文
共 50 条