Partition function of free conformal higher spin theory

被引:0
作者
Matteo Beccaria
Xavier Bekaert
Arkady A. Tseytlin
机构
[1] Università del Salento and INFN,Dipartimento di Matematica e Fisica Ennio De Giorgi
[2] Université François Rabelais,Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson
[3] The Blackett Laboratory,undefined
[4] Imperial College,undefined
[5] Lebedev Institute,undefined
来源
Journal of High Energy Physics | / 2014卷
关键词
Higher Spin Symmetry; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We compute the canonical partition function Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{Z} $$\end{document} of non-interacting conformal higher spin (CHS) theory viewed as a collection of free spin s CFT’s in ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R} $$\end{document}d. We discuss in detail the 4-dimensional case (where s = 1 is the standard Maxwell vector, s = 2 is the Weyl graviton, etc.), but also present a generalization for all even dimensions d. Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{Z} $$\end{document} may be found by counting the numbers of conformal operators and their descendants (modulo gauge identities and equations of motion) weighted by scaling dimensions. This conformal operator counting method requires a careful analysis of the structure of characters of relevant (conserved current, shadow field and conformal Killing tensor) representations of the conformal algebra so\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so} $$\end{document}(d, 2). There is also a close relation to massless higher spin partition functions with alternative boundary conditions in AdSd+1. The same partition function Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{Z} $$\end{document} may also be computed from the CHS path integral on a curved S1 × Sd−1 background. This allows us to determine a simple factorized form of the CHS kinetic operator on this conformally flat background. Summing the individual conformal spin contributions Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{Z} $$\end{document}s over all spins we obtain the total partition function of the CHS theory. We also find the corresponding Casimir energy on the sphere and show that it vanishes if one uses the same regularization prescription that implies the cancellation of the total conformal anomaly a-coefficient. This happens to be true in all even dimensions d ≥ 2.
引用
收藏
相关论文
共 84 条
[1]  
Fradkin ES(1985)Conformal supergravity Phys. Rept. 119 233-undefined
[2]  
Tseytlin AA(1989)Cubic interaction in conformal theory of integer higher spin fields in four-dimensional space-time Phys. Lett. B 231 97-undefined
[3]  
Fradkin ES(2002)On limits of superstring in AdS Theor. Math. Phys. 133 1376-undefined
[4]  
Linetsky VY(2003) × S Nucl. Phys. B 664 59-undefined
[5]  
Tseytlin AA(2010)Conformal higher spin theory Nucl. Phys. B 829 176-undefined
[6]  
Segal AY(1991)Bosonic conformal higher-spin fields of any symmetry Nucl. Phys. B 366 403-undefined
[7]  
Vasiliev MA(2001)Operator content and modular properties of higher dimensional conformal field theories JHEP 01 001-undefined
[8]  
Cardy JL(2013)Partition sums and entropy bounds in weakly coupled CFT Nucl. Phys. B 877 598-undefined
[9]  
Kutasov D(2013)On partition function and Weyl anomaly of conformal higher spin fields Nucl. Phys. B 877 632-undefined
[10]  
Larsen F(2014)Weyl anomaly of conformal higher spins on six-sphere JHEP 06 066-undefined