Fusion of SAR and Multi-spectral Time Series for Determination of Water Table Depth and Lake Area in Peatlands

被引:0
作者
Katrin Krzepek
Jakob Schmidt
Dorota Iwaszczuk
机构
[1] Technical University of Darmstadt,Remote Sensing and Image Analysis, Department of Civil and Environmental Engineering Sciences
来源
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science | 2022年 / 90卷
关键词
Fusion; SAR; NDWI; Peatland; Water area; Water table depth;
D O I
暂无
中图分类号
学科分类号
摘要
Peatlands as natural carbon sinks have a major impact on the climate balance and should therefore be monitored and protected. The hydrology of the peatland serves as an indicator of the carbon storage capacity. Hence, we investigate the question how suitable different remote sensing data are for monitoring the size of open water surface and the water table depth (WTD) of a peatland ecosystem. Furthermore, we examine the potential of combining remote sensing data for this purpose. We use C-band synthetic aperture radar (SAR) data from Sentinel-1 and multi-spectral data from Sentinel-2. The radar backscatter σ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^0$$\end{document}, the normalized difference water index (NDWI) and the modified normalized difference water index (MNDWI) are calculated and used for consideration of the WTD and the lake size. For the measurement of the lake size, we implement and investigate the methods: random forest, adaptive thresholding and an analysis according to the Dempster–Shafer theory. Correlations between WTD and the remote sensing data σ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^0$$\end{document} as well as NDWI are investigated. When looking at the individual data sets the results of our case study show that the VH polarized σ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^0$$\end{document} data produces the clearest delineation of the peatland lake. However the adaptive thresholding of the weighted fusion image of σ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^0$$\end{document}-VH, σ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^0$$\end{document}-VV and MNDWI, and the random forest algorithm with all three data sets as input proves to be the most suitable for determining the lake area. The correlation coefficients between σ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^0$$\end{document}/NDWI and WTD vary greatly and lie in ranges of low to moderate correlation.
引用
收藏
页码:561 / 575
页数:14
相关论文
共 133 条
[1]  
Asmuß T(2019)On the potential of Sentinel-1 for high resolution monitoring of water table dynamics in grasslands on organic soils Remote Sens 11 1-19
[2]  
Bechtold M(2021)Dam-triggered land use land cover change detection and comparison (transition matrix method) of Urmodi River Watershed of Maharashtra, India: a remote sensing and GIS approach Geol Ecol Landsc 10 2-21
[3]  
Tiemeyer B(2018)Inferring water table depth dynamics from ENVISAT-ASAR C-band backscatter over a range of peatlands from deeply-drained to natural conditions Remote Sens 14 1433-1446
[4]  
Bagwan WA(2021)Assessment of automatic extraction of surface water dynamism using multi-temporal satellite data Earth Sci Inf 9 2794-2805
[5]  
Sopan Gavali R(2016)A prototype system for flood monitoring based on flood forecast combined with COSMO-SkyMed and Sentinel-1 data IEEE J Sel Top Appl Earth Obs Remote Sens 45 5-32
[6]  
Bechtold M(2001)Random Forests Mach Learn 30 1134-1138
[7]  
Schlaffer S(2003)The spectral behaviour of Sphagnum canopies under varying hydrological conditions Geophys Res Lett 8 1-17
[8]  
Tiemeyer B(2016)Mapping and characterization of hydrological dynamics in a coastal marsh using high temporal resolution Sentinel-1A images Remote Sens 42 569-576
[9]  
de Lannoy G(2014)Mapping wetland areas using Landsat-derived NDVI and LSWI: a case study of West Songnen Plain, Northeast China J Indian Soc Remote Sens 20 251-263
[10]  
Bhunia GS(2017)A review of wetland remote sensing Sensors 90 2178-2188