On the boundary regularity of suitable weak solutions to the Navier-Stokes equations

被引:0
作者
Wolf J. [1 ]
机构
[1] Otto-von-Guericke University Magdeburg, Magdeburg
关键词
Local boundary regularity; Navier-Stokes equations; Partial regularity;
D O I
10.1007/s11565-010-0091-3
中图分类号
学科分类号
摘要
We consider suitable weak solutions to an incompressible viscous Newtonian fluid governed by the Navier-Stokes equations in the half space. Our main result is a direct proof of the partial regularity up to the flat boundary based on a new decay estimate, which implies the regularity in the cylinder with ε0 sufficiently small. In addition, we get a new condition for the local regularity beyond Serrin's class which involves the L2-norm of ∇u and the L3/2-norm of the pressure. © 2010 Università degli Studi di Ferrara.
引用
收藏
页码:97 / 139
页数:42
相关论文
共 32 条
[1]  
Adams R.A., Sobolev Spaces, (1978)
[2]  
Bae H.-O., Choe H.J., A regularity criterion for the Navier-Stokes equations, Commun. Partial Differ. Equ., 32, 7, pp. 1173-1187, (2007)
[3]  
Batchelor G.K., An Introduction to Fluid Mechanics, (1967)
[4]  
Brown R.M., Shen Z., Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44, pp. 1183-1206, (1995)
[5]  
Caffarelli L., Kohn R., Nirenberg M., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35, pp. 771-831, (1982)
[6]  
Farwig R., Kozono H., Sohr H., An L<sup>q</sup>-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195, pp. 21-53, (2005)
[7]  
Galdi G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I. Linearized Steady Problems, (1994)
[8]  
Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals Math. Studies, No. 105, (1983)
[9]  
Giga Y., Sohr H., Abstract L<sup>p</sup> estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102, pp. 72-94, (1991)
[10]  
Gustafson S., Kang K., Tsai T.-P., Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations, Commun. Math. Phys., 273, 1, pp. 161-176, (2007)