Inhomogeneous Lattice Paths, Generalized Kostka Polynomials and An−1 Supernomials
被引:0
作者:
Anne Schilling
论文数: 0引用数: 0
h-index: 0
机构:Instituut voor Theoretische Fysica,
Anne Schilling
S. Ole Warnaar
论文数: 0引用数: 0
h-index: 0
机构:Instituut voor Theoretische Fysica,
S. Ole Warnaar
机构:
[1] Instituut voor Theoretische Fysica,
[2] Universiteit van Amsterdam,undefined
[3] Valckenierstraat 65,undefined
[4] 1018 XE Amsterdam,undefined
[5] The Netherlands. E-mail: schillin@wins.uva.nl; warnaar@wins.uva.nl,undefined
来源:
Communications in Mathematical Physics
|
1999年
/
202卷
关键词:
Recent Work;
Charge Statistic;
Expansion Coefficient;
Young Tableau;
Lattice Path;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Inhomogeneous lattice paths are introduced as ordered sequences of rectangular Young tableaux thereby generalizing recent work on the Kostka polynomials by Nakayashiki and Yamada and by Lascoux, Leclerc and Thibon. Motivated by these works and by Kashiwara's theory of crystal bases we define a statistic on paths yielding two novel classes of polynomials. One of these provides a generalization of the Kostka polynomials, while the other, which we name the An−1 supernomial, is a q-deformation of the expansion coefficients of products of Schur polynomials. Many well-known results for Kostka polynomials are extended leading to representations of our polynomials in terms of a charge statistic on Littlewood–Richardson tableaux and in terms of fermionic configuration sums. Several identities for the generalized Kostka polynomials and the An−1 supernomials are proven or conjectured. Finally, a connection between the supernomials and Bailey's lemma is made.