The short pulse equation by a Riemann–Hilbert approach

被引:2
作者
Anne Boutet de Monvel
Dmitry Shepelsky
Lech Zielinski
机构
[1] Université Paris Diderot,Institut de Mathématiques de Jussieu
[2] Institute for Low Temperature Physics,PRG
[3] Université du Littoral Côte d’Opale,Mathematical Division
来源
Letters in Mathematical Physics | 2017年 / 107卷
关键词
Short pulse equation; Short wave equation; Camassa–Holm-type equation; Inverse scattering transform; Riemann–Hilbert problem; Primary 35Q53; Secondary 37K15; 35Q15; 35B40; 35Q51; 37K40;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a Riemann–Hilbert approach to the inverse scattering transform method for the short pulse (SP) equation uxt=u+16(u3)xx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{xt}=u+\tfrac{1}{6}(u^3)_{xx} \end{aligned}$$\end{document}with zero boundary conditions (as |x|→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x|\rightarrow \infty $$\end{document}). This approach is directly applied to a Lax pair for the SP equation. It allows us to give a parametric representation of the solution to the Cauchy problem. This representation is then used for studying the longtime behavior of the solution as well as for retrieving the soliton solutions. Finally, the analysis of the longtime behavior allows us to formulate, in spectral terms, a sufficient condition for the wave breaking.
引用
收藏
页码:1345 / 1373
页数:28
相关论文
共 46 条
  • [1] Beals R(1984)Scattering and inverse scattering for first order systems Comm. Pure Appl. Math. 37 39-90
  • [2] Coifman RR(2005)The short pulse hierarchy J. Math. Phys. 46 123507-478
  • [3] Brunelli JC(2006)The bi-Hamiltonian structure of the short pulse equation Phys. Lett. A 353 475-1664
  • [4] Brunelli JC(1993)An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71 1661-1374
  • [5] Camassa R(2005)Ultra-short pulses in linear and nonlinear media Nonlinearity 18 1351-1557
  • [6] Holm DD(2015)Well-posedness results for the short pulse equation Z. Angew. Math. Phys. 66 1529-44
  • [7] Chung Y(2015)Wellposedness of bounded solutions of the non-homogeneous initial boundary for the short pulse equation Boll. Unione Mat. Ital. 8 31-368
  • [8] Jones CKRT(1993)A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation Ann. Math. 137 295-243
  • [9] Schäfer T(1996)Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation Phys. D 95 229-66
  • [10] Wayne CE(1981)Symplectic structures, their Bäcklund transformations and hereditary symmetries Phys. D 4 47-388