Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity

被引:0
作者
Laurent Bienvenu
机构
[1] Université de Provence & CNRS,Laboratoire d’Informatique Fondamentale
来源
Theory of Computing Systems | 2010年 / 46卷
关键词
Kolmogorov complexity; Kolmogorov-Loveland stochasticity; Effective Hausdorff dimension;
D O I
暂无
中图分类号
学科分类号
摘要
Merkle et al. (Ann. Pure Appl. Logic 138(1–3):183–210, 2006) showed that all Kolmogorov-Loveland stochastic infinite binary sequences have constructive Hausdorff dimension 1. In this paper, we go even further, showing that from an infinite sequence of dimension less than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(\frac {1}{2}+\delta)$\end{document} (ℋ being the Shannon entropy function) one can extract by an effective selection rule a biased subsequence with bias at least δ. We also prove an analogous result for finite strings.
引用
收藏
页码:598 / 617
页数:19
相关论文
共 50 条
  • [41] Kolmogorov complexity and non-determinism
    Grigorieff, S
    Marion, JY
    THEORETICAL COMPUTER SCIENCE, 2002, 271 (1-2) : 151 - 180
  • [42] An Additivity Theorem for Plain Kolmogorov Complexity
    Bruno Bauwens
    Alexander Shen
    Theory of Computing Systems, 2013, 52 : 297 - 302
  • [43] List Approximation for Increasing Kolmogorov Complexity
    Zimand, Marius
    34TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2017), 2017, 66
  • [44] On the Approximation of the Kolmogorov Complexity for DNA Sequences
    Pratas, Diogo
    Pinho, Armando J.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2017), 2017, 10255 : 259 - 266
  • [45] An Additivity Theorem for Plain Kolmogorov Complexity
    Bauwens, Bruno
    Shen, Alexander
    THEORY OF COMPUTING SYSTEMS, 2013, 52 (02) : 297 - 302
  • [46] Kolmogorov complexity conditional to large integers
    Vereshchagin, NK
    THEORETICAL COMPUTER SCIENCE, 2002, 271 (1-2) : 59 - 67
  • [47] Kolmogorov complexity for possibly infinite computations
    Becher V.
    Figueira S.
    Journal of Logic, Language and Information, 2005, 14 (2) : 133 - 148
  • [48] Fourier transform bounded Kolmogorov complexity
    Terry-Jack, Mohammed
    O'Keefe, Simon
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 453
  • [49] Kolmogorov complexity and computably enumerable sets
    Barmpalias, George
    Li, Angsheng
    ANNALS OF PURE AND APPLIED LOGIC, 2013, 164 (12) : 1187 - 1200
  • [50] On the Kolmogorov complexity of continuous real functions
    Farjudian, Amin
    ANNALS OF PURE AND APPLIED LOGIC, 2013, 164 (05) : 566 - 576