Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity

被引:0
作者
Laurent Bienvenu
机构
[1] Université de Provence & CNRS,Laboratoire d’Informatique Fondamentale
来源
Theory of Computing Systems | 2010年 / 46卷
关键词
Kolmogorov complexity; Kolmogorov-Loveland stochasticity; Effective Hausdorff dimension;
D O I
暂无
中图分类号
学科分类号
摘要
Merkle et al. (Ann. Pure Appl. Logic 138(1–3):183–210, 2006) showed that all Kolmogorov-Loveland stochastic infinite binary sequences have constructive Hausdorff dimension 1. In this paper, we go even further, showing that from an infinite sequence of dimension less than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(\frac {1}{2}+\delta)$\end{document} (ℋ being the Shannon entropy function) one can extract by an effective selection rule a biased subsequence with bias at least δ. We also prove an analogous result for finite strings.
引用
收藏
页码:598 / 617
页数:19
相关论文
共 50 条