Merkle et al. (Ann. Pure Appl. Logic 138(1–3):183–210, 2006) showed that all Kolmogorov-Loveland stochastic infinite binary sequences have constructive Hausdorff dimension 1. In this paper, we go even further, showing that from an infinite sequence of dimension less than
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal {H}(\frac {1}{2}+\delta)$\end{document}
(ℋ being the Shannon entropy function) one can extract by an effective selection rule a biased subsequence with bias at least δ. We also prove an analogous result for finite strings.
机构:
Univ S Africa, Dept Math Appl Math & Astron, ZA-0003 Pretoria, South AfricaUniv S Africa, Dept Math Appl Math & Astron, ZA-0003 Pretoria, South Africa
Department of Computer and Information Science, Brooklyn College, CUNY, Brooklyn, NY 11210, United States
论文数: 0引用数: 0
h-index: 0
机构:
Department of Computer and Information Science, Brooklyn College, CUNY, BrooklynDepartment of Computer and Information Science, Brooklyn College, CUNY, Brooklyn
Department of Computer and Information Science, Brooklyn College, CUNY, Brooklyn, NY 11210, United States
不详
论文数: 0引用数: 0
h-index: 0
机构:
Computer Science Department of the Graduate Center, CUNY, New YorkDepartment of Computer and Information Science, Brooklyn College, CUNY, Brooklyn
机构:
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
Binns, Stephen
Nicholson, Marie
论文数: 0引用数: 0
h-index: 0
机构:
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia