Thermal Decomposition of Strontium Iron Citrate

被引:0
|
作者
N. S. Gajbhiye
A. Vijayalakshmi
机构
[1] Indian Institute of Technology Kanpur,Department of Chemistry
来源
Journal of Thermal Analysis and Calorimetry | 1998年 / 51卷
关键词
citrate; hexaferrite; precursor; thermal decomposition; ultrafine;
D O I
暂无
中图分类号
学科分类号
摘要
The citrate precursor method has been used to synthesise ultrafine SrFe12O19. The thermal decomposition of citrate precursor SrFe12O6 (C6H6O7)13 was investigated by TG, DTG and DTA techniques, gas and chemical analyses. The citrate precursor on decomposition in static air atmosphere yields pure and stoichiometric SrFe12O19. The decomposition consists of three major steps, the formation of acetone dicarboxylate complex occurs around 165°C. The citrate groups are completely destroyed in the temperature range 195–315°C resulting in the formation of complex carbonate with the evolution of acetone and CO2 gas. The decomposition of carbonate results in the formation of ultrafine SrFe12O19 below 550°C with the evolution of CO2 gas. The ultrafine particles are observed as platelet clusters having crystallite size 13 nm and surface area 76.4 m2 g−1. The citrate precursor and the decomposed products were characterised by IR, NMR, XRD, SEM and surface area measurements.
引用
收藏
页码:517 / 527
页数:10
相关论文
共 50 条
  • [41] Influence of gas media on the thermal decomposition of second valence iron sulphates
    V. Petkova
    Y. Pelovski
    D. Paneva
    I. Mitov
    Journal of Thermal Analysis and Calorimetry, 2011, 105 : 793 - 803
  • [42] Influence of the initial iron concentration on the iron-loading in MCM-41 and thermal decomposition of the supported iron complexes
    Liu, SQ
    Cool, P
    Lu, LC
    Beyers, E
    Van der Voort, P
    Vansant, EF
    Jiang, MH
    MICROPOROUS AND MESOPOROUS MATERIALS, 2005, 79 (1-3) : 299 - 305
  • [43] Thermal decomposition of low-density polyethylene in the presence of iron and copper chlorides
    Blazso, M
    Zelei, B
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1996, 36 (02) : 149 - 158
  • [44] The Synthesis of Maghemite Nanoparticles by Thermal Decomposition of Cryochemically Modified Iron(III) Acetylacetonate
    O. I. Vernaya
    A. S. Shumilkin
    V. P. Shabatin
    T. I. Shabatina
    M. Ya. Melnikov
    Moscow University Chemistry Bulletin, 2020, 75 : 265 - 268
  • [45] Thermal decomposition of yttrium-iron citrates prepared in ethylene glycol medium
    Todorovsky, DS
    Todorovska, RV
    Groudeva-Zotova, S
    MATERIALS LETTERS, 2002, 55 (1-2) : 41 - 45
  • [46] Thermal decomposition of freeze-dried μ-oxo-carboxylates of manganese and iron
    Langbein, H
    Christen, S
    Bonsdorf, G
    THERMOCHIMICA ACTA, 1999, 327 (1-2) : 173 - 180
  • [47] Characterization of the Shape Anisotropy of Superparamagnetic Iron Oxide Nanoparticles during Thermal Decomposition
    Vanhecke, Dimitri
    Crippa, Federica
    Lattuada, Marco
    Balog, Sandor
    Rothen-Rutishauser, Barbara
    Petri-Fink, Alke
    MATERIALS, 2020, 13 (09)
  • [48] The Synthesis of Maghemite Nanoparticles by Thermal Decomposition of Cryochemically Modified Iron(III) Acetylacetonate
    Vernaya, O. I.
    Shumilkin, A. S.
    Shabatin, V. P.
    Shabatina, T. I.
    Melnikov, M. Ya.
    MOSCOW UNIVERSITY CHEMISTRY BULLETIN, 2020, 75 (05) : 265 - 268
  • [49] Heating-rate effect on the BaTiO3 formation by thermal decomposition of metal citrate polymeric precursors
    Durán, P
    Capel, F
    Tartaj, J
    Gutierrez, D
    Moure, C
    SOLID STATE IONICS, 2001, 141 : 529 - 539
  • [50] Insights into semi-continuous synthesis of iron oxide nanoparticles (IONPs) via thermal decomposition of iron oleate
    Hofgen, Egon Gotz
    Bandyopadhyay, Sulalit
    DISCOVER NANO, 2025, 20 (01)