Thermal Decomposition of Strontium Iron Citrate

被引:0
|
作者
N. S. Gajbhiye
A. Vijayalakshmi
机构
[1] Indian Institute of Technology Kanpur,Department of Chemistry
来源
Journal of Thermal Analysis and Calorimetry | 1998年 / 51卷
关键词
citrate; hexaferrite; precursor; thermal decomposition; ultrafine;
D O I
暂无
中图分类号
学科分类号
摘要
The citrate precursor method has been used to synthesise ultrafine SrFe12O19. The thermal decomposition of citrate precursor SrFe12O6 (C6H6O7)13 was investigated by TG, DTG and DTA techniques, gas and chemical analyses. The citrate precursor on decomposition in static air atmosphere yields pure and stoichiometric SrFe12O19. The decomposition consists of three major steps, the formation of acetone dicarboxylate complex occurs around 165°C. The citrate groups are completely destroyed in the temperature range 195–315°C resulting in the formation of complex carbonate with the evolution of acetone and CO2 gas. The decomposition of carbonate results in the formation of ultrafine SrFe12O19 below 550°C with the evolution of CO2 gas. The ultrafine particles are observed as platelet clusters having crystallite size 13 nm and surface area 76.4 m2 g−1. The citrate precursor and the decomposed products were characterised by IR, NMR, XRD, SEM and surface area measurements.
引用
收藏
页码:517 / 527
页数:10
相关论文
共 50 条
  • [21] Kinetics of thermal decomposition of iron(III) dicarboxylate complexes
    R. Prasad
    A. Sulaxna
    Journal of Thermal Analysis and Calorimetry, 2005, 81 : 441 - 450
  • [22] Synthesis of Iron Oxide Nanoparticles by Thermal Decomposition Approach
    Dixit, Shuchi
    Jeevanandam, P.
    NANOMATERIALS AND DEVICES: PROCESSING AND APPLICATIONS, 2009, 67 : 221 - 226
  • [23] Microwave-Assisted Hydrothermal Synthesis, Crystal Structure, and Thermal Decomposition of Strontium Citrate Monohydrate Sr3(C6H5O7)2•H2O
    Haemmer, Matthias
    Wessels, Vivien
    Ettlinger, Romy
    Hoeppe, Henning. A.
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2021, 647 (04): : 204 - 209
  • [24] MECHANOCHEMICAL SYNTHESIS AND THERMAL DECOMPOSITION OF IRON (II) OXALATE
    Rumyantsev, R. N.
    Ilyin, A. A.
    Ilyin, A. P.
    Zhukov, A. B.
    Mezentseva, A. A.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2014, 57 (07): : 80 - +
  • [25] Synthesis of strontium bismuth niobate (SrBi2Nb2O9) using an aqueous acetate-citrate precursor gel:: thermal decomposition and phase formation
    Nelis, D
    Mondelaers, D
    Vanhoyland, G
    Hardy, A
    Van Werde, K
    Van den Rul, H
    Van Bael, MK
    Mullens, J
    Van Poucke, LC
    D'Haen, J
    THERMOCHIMICA ACTA, 2005, 426 (1-2) : 39 - 48
  • [26] Decomposition of γ-irradiated strontium oxalate
    Bose, S
    Bhatta, S
    Bhatta, D
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1998, 145 (03): : 263 - 270
  • [27] Strontium ferrite nanoparticle study: Thermal decomposition synthesis, characterization, and optical and magnetic properties
    Javidan, Abdollah
    Rafizadeh, Somayeh
    Hosseinpour-Mashkani, S. Mostafa
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 27 : 468 - 473
  • [28] Synthesis of Silver-Iron Oxide Nanocomposites by Thermal Decomposition
    Kishore, P. N. R.
    Jeevanandam, P.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (04) : 3445 - 3453
  • [29] Control of iron nanoparticles size and shape by thermal decomposition method
    Shao, HP
    Lee, H
    Huang, YQ
    Ko, IY
    Kim, C
    IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (10) : 3388 - 3390
  • [30] The thermal decomposition of azidopyridines
    Nedel'ko, V. V.
    Korsunskii, B. L.
    Larikova, T. S.
    Mikhailov, Yu. M.
    Chapyshev, S. V.
    Chukanov, N. V.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 5 (02) : 244 - 249