Localized and Expanding Entire Solutions of Reaction–Diffusion Equations

被引:0
作者
F. Hamel
H. Ninomiya
机构
[1] CNRS,Aix Marseille Univ
[2] Centrale Marseille,School of Interdisciplinary Mathematical Sciences
[3] I2M,undefined
[4] Meiji University,undefined
来源
Journal of Dynamics and Differential Equations | 2022年 / 34卷
关键词
Reaction–diffusion equations; Entire solutions; Extinction; Propagation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the spatio-temporal dynamics of nonnegative bounded entire solutions of some reaction–diffusion equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} in any space dimension N. The solutions are assumed to be localized in the past. Under certain conditions on the reaction term, the solutions are then proved to be time-independent or heteroclinic connections between different steady states. Furthermore, either they are localized uniformly in time, or they converge to a constant steady state and spread at large time. This result is then applied to some specific bistable-type reactions.
引用
收藏
页码:2937 / 2974
页数:37
相关论文
共 117 条
  • [11] Lions P-L(1998), Arch. Ration. Mech. Anal. 142 127-141
  • [12] Berestycki H(2013)Uniqueness of the ground state solution for Proc. Lond. Math. Soc. 106 318-344
  • [13] Lions P-L(2010) and a variational characterization of other solutions J. Eur. Math. Soc. 12 279-312
  • [14] Berestycki H(2015)Uniqueness of positive solution of Indiana Univ. Math. J. 64 787-824
  • [15] Lions P-L(2014) in Trans. Am. Math. Soc. 366 5541-5566
  • [16] Peletier LA(1998), Commun. Math. Phys. 199 441-470
  • [17] Busca J(1977)Non-uniqueness of positive ground states of non-linear Schrödinger equations Arch. Ration. Mech. Anal. 65 335-361
  • [18] Jendoubi MA(2011)Convergence and sharp thresholds for propagation in nonlinear diffusion problems Tohoku Math. J. 63 561-579
  • [19] Poláčik P(2011)Locally uniform convergence to an equilibrium for nonlinear parabolic equations on J. Differ. Equ. 251 1903-1922
  • [20] Chen C-C(1996)Existence and convergence to a propagating terrace in one-dimensional reaction–diffusion equations Adv. Math. 118 177-243