Localized and Expanding Entire Solutions of Reaction–Diffusion Equations

被引:0
作者
F. Hamel
H. Ninomiya
机构
[1] CNRS,Aix Marseille Univ
[2] Centrale Marseille,School of Interdisciplinary Mathematical Sciences
[3] I2M,undefined
[4] Meiji University,undefined
来源
Journal of Dynamics and Differential Equations | 2022年 / 34卷
关键词
Reaction–diffusion equations; Entire solutions; Extinction; Propagation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the spatio-temporal dynamics of nonnegative bounded entire solutions of some reaction–diffusion equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} in any space dimension N. The solutions are assumed to be localized in the past. Under certain conditions on the reaction term, the solutions are then proved to be time-independent or heteroclinic connections between different steady states. Furthermore, either they are localized uniformly in time, or they converge to a constant steady state and spread at large time. This result is then applied to some specific bistable-type reactions.
引用
收藏
页码:2937 / 2974
页数:37
相关论文
共 117 条
  • [1] Adachi S(2018)A note on the uniqueness and the non-degeneracy of positive radial solutions for semilinear elliptic problems and its application Acta Math. Sci. B 38 1121-1142
  • [2] Shibata M(1979)A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening Acta. Metall. 27 1084-1095
  • [3] Watanabe T(1978)Multidimensional nonlinear diffusion arising in population genetics Adv. Math. 30 33-76
  • [4] Allen S(2012)Generalized transition waves and their properties Commun. Pure Appl. Math. 65 592-648
  • [5] Cahn JW(1980)Une méthode locale pour l’existence de solutions positives de problèmes semilinéaires elliptiques dans J. Anal. Math. 38 144-187
  • [6] Aronson DG(1983)Nonlinear scalar fields, I: existence of a ground state Arch. Ration. Mech. Anal. 82 313-345
  • [7] Weinberger HF(1981)An ODE approach to the existence of positive solutions for semilinear problems in Indiana Univ. Math. J. 30 141-157
  • [8] Berestycki H(2002)Convergence to equilibrium for semilinear parabolic problems in Commun. Partial Differ. Equ. 27 1793-1814
  • [9] Hamel F(1991)Uniqueness of the ground state solution of Commun. Partial Differ. Equ. 16 1549-1572
  • [10] Berestycki H(1972) in Arch. Ration. Mech. Anal. 46 81-95