Probabilistic approach to homogenization of viscosity solutions of parabolic PDEs

被引:0
|
作者
Rainer Buckdahn
Ying Hu
Shige Peng
机构
[1] Département de Mathématiques,
[2] Université de Bretagne Occidentale,undefined
[3] F-29285 Brest Cédex,undefined
[4] France,undefined
[5] Institut de Recherche Mathématique de Rennes,undefined
[6] Université de Rennes 1,undefined
[7] Campus de Beaulieu,undefined
[8] F-35042 Rennes Cedex,undefined
[9] France e-mail: hu@maths.univ-rennes1.fr ,undefined
[10] Mathematics Department,undefined
[11] Shandong University,undefined
[12] 250100 Jinan,undefined
[13] Shandong,undefined
[14] China ,undefined
来源
Nonlinear Differential Equations and Applications NoDEA | 1999年 / 6卷
关键词
Viscosity Solution; Main Tool; Probabilistic Approach; Homogenization Problem; Parabolic PDEs;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop the probabilistic approach to homogenization problems of viscosity solutions of systems of semilinear parabolic PDEs. Our main tool is the nonlinear Feynman-Kac formula.
引用
收藏
页码:395 / 411
页数:16
相关论文
共 50 条
  • [1] Viscosity Solutions to Second Order Parabolic PDEs on Riemannian Manifolds
    Xuehong Zhu
    Acta Applicandae Mathematicae, 2011, 115 : 279 - 290
  • [2] Viscosity Solutions to Second Order Parabolic PDEs on Riemannian Manifolds
    Zhu, Xuehong
    ACTA APPLICANDAE MATHEMATICAE, 2011, 115 (03) : 279 - 290
  • [3] On the Relationship Between Viscosity and Distribution Solutions for Nonlinear Neumann Type PDEs: The Probabilistic Approach
    Ren, Jiagang
    Wang, Shoutian
    Wu, Jing
    APPLIED MATHEMATICS AND OPTIMIZATION, 2025, 91 (01)
  • [4] A probabilistic approach to quasilinear parabolic PDEs with obstacle and Neumann problems*
    Xiao, Lishun
    Fan, Shengjun
    Tian, Dejian
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 207 - 226
  • [5] An algorithm for probabilistic solution of parabolic PDEs
    Haneche, M.
    Djaballah, K.
    Khaldi, K.
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2021, 40 (04): : 441 - 465
  • [6] ON VISCOSITY SOLUTIONS OF PATH DEPENDENT PDES
    Ekren, Ibrahim
    Keller, Christian
    Touzi, Nizar
    Zhang, Jianfeng
    ANNALS OF PROBABILITY, 2014, 42 (01) : 204 - 236
  • [7] A representation theorem approach to probabilistic interpretation for viscosity solutions of Isaacs equations
    Xiao, Lishun
    Fan, Shengjun
    Tian, Dejian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 517 (02)
  • [8] AN ENSEMBLE ALGORITHM FOR NUMERICAL SOLUTIONS TO DETERMINISTIC AND RANDOM PARABOLIC PDEs
    Luo, Yan
    Wang, Zhu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (02) : 859 - 876
  • [9] Viscosity solutions for elliptic-parabolic problems
    Mannucci, Paola
    Vazquez, Juan Luis
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (1-2): : 75 - 90
  • [10] Viscosity solutions of monotonic functional parabolic PDE
    Liu, WA
    Lu, G
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (04) : 739 - 748