Dynamic electrophoretic mobility of a spherical colloidal particle with a hydrodynamically slipping surface in an oscillating electric field

被引:0
作者
Hiroyuki Ohshima
机构
[1] Tokyo University of Science,Faculty of Pharmaceutical Sciences
来源
Colloid and Polymer Science | 2020年 / 298卷
关键词
Dynamic electrophoretic mobility; Zeta potential; Spherical particle; Slip surface; Hydrophobicity;
D O I
暂无
中图分类号
学科分类号
摘要
A theory of the dynamic electrophoresis of a spherical colloidal particle with a slip surface in an oscillating electric field is developed. The slipping length on the particle surface, which is the measure of the degree of the particle surface hydrophobicity, is introduced. The general expression of the particle electrophoretic mobility and its approximate analytic expressions for a particle carrying a low zeta potential are derived.
引用
收藏
页码:459 / 462
页数:3
相关论文
共 54 条
[1]  
Henry DC(1931)The cataphoresis of suspended particles. Part I. The equation of cataphoresis Proc Roy Soc London Ser A 133 106-129
[2]  
Overbeek JTG(1943)Theorie der Elektrophorese Kolloid-Beihefte 54 287-364
[3]  
O'Brien RW(1978)Electrophoretic mobility of a spherical colloidal particle J Chem Soc Faraday Trans II 74 1607-1626
[4]  
White LR(1983)Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions J Chem Soc Faraday Trans II 79 1613-1628
[5]  
Ohshima H(1993)Non-equilibrium electric surface phenomena Adv Colloid Interf Sci 44 1-134
[6]  
Healy TW(1994)A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles J Colloid Interface Sci 168 269-271
[7]  
White LR(1999)Slippage of water over hydrophobic surfaces Int J Miner Process 56 31-60
[8]  
Dukhin SS(2002)Electrokinetic properties of methylated quartz capillaries Adv Colloid Interf Sci 96 265-278
[9]  
Ohshima H(2005)Boundary slip in Newtonian liquids: a review of experimental studies Rep Prog Phys 68 2859-2897
[10]  
Vinogradova O(2007)Flow boundary conditions from nano-to microscales Soft Matter 3 685-693