On the Continuity of the Solution Map of the Euler–Poincaré Equations in Besov Spaces

被引:0
作者
Min Li
Huan Liu
机构
[1] Jiangxi University of Finance and Economics,Department of Mathematics
[2] Jiangxi University of Finance and Economics,School of Statistics
来源
Journal of Mathematical Fluid Mechanics | 2023年 / 25卷
关键词
Euler–Poincaré equations; Nowhere uniformly continuous; Besov spaces; Data-to-solution map; 35Q35; 35Q51; 35L30;
D O I
暂无
中图分类号
学科分类号
摘要
By constructing a series of perturbation functions through localization in the Fourier domain and using a symmetric form of the system, we show that the data-to-solution map for the Euler–Poincaré equations is nowhere uniformly continuous in Bp,rs(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^s_{p,r}(\mathbb {R}^d)$$\end{document} with s>max{1+d2,32}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>\max \{1+\frac{d}{2},\frac{3}{2}\}$$\end{document} and (p,r)∈(1,∞)×[1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p,r)\in (1,\infty )\times [1,\infty )$$\end{document}. This improves our previous result (Li et al. in Nonlinear Anal RWA 63:103420, 2022) which shows the data-to-solution map for the Euler–Poincaré equations is non-uniformly continuous on a bounded subset of Bp,rs(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^s_{p,r}(\mathbb {R}^d)$$\end{document} near the origin.
引用
收藏
相关论文
共 68 条
[1]  
Bourgain J(2019)Galilean boost and non-uniform continuity for incompressible Euler Commun. Math. Phys. 372 261-280
[2]  
Li D(2007)Global conservative solutions of the Camassa–Holm equation Arch. Ration. Mech. Anal. 183 215-239
[3]  
Bressan A(2007)Global dissipative solutions of the Camassa–Holm equation Anal. Appl. 5 1-27
[4]  
Constantin A(1993)An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71 1661-1664
[5]  
Bressan A(2012)Blow-up, zero Commun. Math. Phys. 314 671-687
[6]  
Constantin A(2000) limit and the Liouville type theorem for the Euler–Poincaré equations Ann. Inst. Fourier (Grenoble) 50 321-362
[7]  
Camassa R(2006)Existence of permanent and breaking waves for a shallow water equation: a geometric approach Invent. Math. 166 523-535
[8]  
Holm DD(1998)The trajectories of particles in Stokes waves Commun. Pure Appl. Math. 51 475-504
[9]  
Chae D(1998)Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation Acta Math. 181 229-243
[10]  
Liu J(1998)Wave breaking for nonlinear nonlocal shallow water equations Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 303-328