On the existence and position of the farthest peaks of a family of stochastic heat and wave equations

被引:1
作者
Daniel Conus
Davar Khoshnevisan
机构
[1] University of Utah,Department of Mathematics
来源
Probability Theory and Related Fields | 2012年 / 152卷
关键词
Stochastic PDEs; Stochastic heat equation; Intermittence; Primary 60H15; Secondary 35R60;
D O I
暂无
中图分类号
学科分类号
摘要
We study the stochastic heat equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial_t u = \mathcal{L}u+\sigma(u)\dot W}$$\end{document} in (1 + 1) dimensions, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot W}$$\end{document} is space-time white noise, σ : R → R is Lipschitz continuous, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} is the generator of a symmetric Lévy process that has finite exponential moments, and u0 has exponential decay at ±∞. We prove that under natural conditions on σ : (i) The νth absolute moment of the solution to our stochastic heat equation grows exponentially with time; and (ii) The distances to the origin of the farthest high peaks of those moments grow exactly linearly with time. Very little else seems to be known about the location of the high peaks of the solution to the stochastic heat equation under the present setting (see, however, Gärtner et al. in Probab Theory Relat Fields 111:17–55, 1998; Gärtner et al. in Ann Probab 35:439–499, 2007 for the analysis of the location of the peaks in a different model). Finally, we show that these results extend to the stochastic wave equation driven by Laplacian.
引用
收藏
页码:681 / 701
页数:20
相关论文
共 35 条
[1]  
Bertini L.(1994)The stochastic heat equation: Feynman–Kac formula and intermittence J. Stat. Phys. 78 1377-1402
[2]  
Cancrini N.(1966)Martingale transforms Ann. Math. Stat. 37 1494-1504
[3]  
Burkholder D.L.(1970)Extrapolation and interpolation of quasi-linear operators on martingales Acta. Math. 124 249-304
[4]  
Burkholder D.L.(1991) estimates for multiple stochastic integrals Ann. Probab. 19 354-368
[5]  
Gundy R.F.(1988)Random nonlinear wave equations: propagation of singularities Ann. Probab. 16 730-751
[6]  
Carlen E.(2008)The non-linear stochastic wave equation in high dimensions Electron. J. Probab 13 629-670
[7]  
Kree P.(1998)The stochastic wave equation in two spatial dimensions Ann. Probab. 26 187-212
[8]  
Carmona R.A.(2003)Some non-linear S.P.D.E.’s that are second order in time Electron. J. Probab. 8 21-1164
[9]  
Nualart D.(2009)Intermittency properties in a hyperbolic Anderson problem Ann. Inst. Henri Poincaré 45 1150-704
[10]  
Conus D.(1976)On the Duke Math. J. 43 697-55