Fixed point indices of central configurations

被引:0
作者
D. L. Ferrario
机构
[1] University of Milano-Bicocca,Department of Mathematics and Applications
来源
Journal of Fixed Point Theory and Applications | 2015年 / 17卷
关键词
Central configurations; relative equilibria; -body problem; Primary 55M20; Secondary 37C25; 70F10;
D O I
暂无
中图分类号
学科分类号
摘要
Central configurations of n point particles in E≈Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E \approx \mathbb{R}^d}$$\end{document} with respect to a potential function U are shown to be the same as the fixed points of the normalized gradient map F=-∇MU/||∇MU||M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F = -\nabla_{M}U / ||\nabla_{M}U||_{M}}$$\end{document} , which is an SO(d)-equivariant self-map defined on the inertia ellipsoid. We show that the SO(d)-orbits of fixed points of F are all fixed points of the map induced on the quotient by SO(d), and we give a formula relating their indices (as fixed points) with their Morse indices (as critical points). At the end, we give an example of a nonplanar relative equilibrium which is not a central configuration.
引用
收藏
页码:239 / 251
页数:12
相关论文
共 18 条
[1]  
Albouy A.(1995)Symétrie des configurations centrales de quatre corps C. R. Acad. Sci. Paris Sér. I Math. 320 217-220
[2]  
Albouy A.(1998)Le problème des n corps et les distances mutuelles Invent. Math. 131 151-184
[3]  
Chenciner A.(2012)Finiteness of central configurations of five bodies in the plane Ann. of Math. (2) 176 535-588
[4]  
Albouy A.(1877)Sopra il moto di un sistema di un numero qualunque di punti che si attraggono o si respingono tra loro Ann. Mat. Pura Appl. 8 301-311
[5]  
Kaloshin V.(2007)Planar central configurations as fixed points J. Fixed Point Theory Appl. 2 277-291
[6]  
Betti E.(2006)Finiteness of relative equilibria of the four-body problem Invent. Math. 163 289-312
[7]  
Ferrario D. L.(1990)On central configurations Math. Z. 205 499-517
[8]  
Hampton M.(1987)Central configurations of the Arch. Ration. Mech. Anal. 97 59-74
[9]  
Moeckel R.(1979)-body problem via equivariant Morse theory Comm. Math. Phys. 69 19-30
[10]  
Moeckel R.(1973)The principle of symmetric criticality Bull. Amer. Math. Soc. 79 904-908