On the lengths of mutually permutable products of finite groups

被引:0
作者
V. I. Murashka
A. F. Vasil’ev
机构
[1] Francisk Skorina Gomel State University,Faculty of Mathematics and Technologies of Programming
关键词
finite group; generalized Fitting subgroup; mutually permutable product of groups; generalized Fitting height; non-p-soluble length; Plotkin radical; 20D40; 20D25;
D O I
暂无
中图分类号
学科分类号
摘要
E. I. Khukhro and P. Shumyatsky introduced the generalized Fitting height h∗(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^*(G)$$\end{document} and the non-p-soluble length λp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda_p(G)$$\end{document} of a group G. We prove that if a finite group G is a mutually permutable product of subgroups A and B then max{h∗(A),h∗(B)}≤h∗(G)≤max{h∗(A),h∗(B)}+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max\{h^*(A), h^*(B)\}\leq h^*(G)\leq \max\{h^*(A), h^*(B)\}+1$$\end{document} and max{λp(A),λp(B)}=λp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max\{\lambda_p(A), \lambda_p(B)\}= \lambda_p(G)$$\end{document}. Also we introduce and study the non-Frattini length.
引用
收藏
页码:412 / 429
页数:17
相关论文
empty
未找到相关数据