Optical soliton solutions to the space–time fractional perturbed Schrödinger equation in communication engineering

被引:0
|
作者
M. Ali Akbar
Mst. Munny Khatun
机构
[1] University of Rajshahi,Department of Applied Mathematics
来源
Optical and Quantum Electronics | 2023年 / 55卷
关键词
Nonlinear perturbed Schrödinger equation; Fractional derivative; -expansion method; Improved ; -expansion method; Optical fiber;
D O I
暂无
中图分类号
学科分类号
摘要
The fractional perturbed nonlinear Schrödinger equation is important to model the dynamics of ultra-short pulses in lasers, solitons behavior in nonlinear optical fiber, signal processing, spectroscopy, etc. In this study, we construct assorted soliton solutions to the aforementioned equation utilizing a couple of analytical approaches, namely the (G′/G,1/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^{\prime}/G,1/G)$$\end{document}-expansion method and the improved F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document}-expansion method, to simulate the behavior of localized wave packets known as soliton in the presence of nonlinear perturbation and fractional derivatives through closed-form solutions. The solutions comprise arbitrary parameters, and for appropriate values of these parameters, several typical solitons, including compacton, periodic, irregular-periodic soliton, bell-shaped soliton, V-shaped soliton, kink, and some others are established. We investigate the effect of the fractional-order derivatives, and the graphs confirm that the fractional derivatives affect the amplitude, velocity, and width of the solitons. This study establishes the reliability of the implemented methods for finding soliton solutions of other nonlinear evolution equations.
引用
收藏
相关论文
共 50 条
  • [1] Optical soliton solutions to the space-time fractional perturbed Schrodinger equation in communication engineering
    Akbar, M. Ali
    Khatun, Mst. Munny
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (07)
  • [2] Optical soliton solutions for a space-time fractional perturbed nonlinear Schr?dinger equation arising in quantum physics
    Abdoud, M. A.
    Owyed, Saud
    Abdel-Aty, A.
    Raffan, Bahaaudin M.
    Abdel-Khalek, S.
    RESULTS IN PHYSICS, 2020, 16
  • [3] Soliton solutions of the space–time fractional nonlocal nonlinear Schrödinger equation
    Zhang L.
    Liu H.
    Optik, 2023, 289
  • [4] On the exact solutions of optical perturbed fractional Schrödinger equation
    Ozkan, Erdogan Mehmet
    Yildirim, Ozgur
    Ozkan, Ayten
    PHYSICA SCRIPTA, 2023, 98 (11)
  • [5] Optical soliton solutions of perturbed nonlinear Schrödinger equation with parabolic law nonlinearity
    Arshed, Saima
    Akram, Ghazala
    Sadaf, Maasoomah
    Ul Nabi, Andleeb
    Alzaidi, Ahmed S. M.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (01)
  • [6] Optical soliton solutions of perturbed nonlinear Schrödinger equation with parabolic law nonlinearity
    Saima Arshed
    Ghazala Akram
    Maasoomah Sadaf
    Andleeb Ul Nabi
    Ahmed S. M. Alzaidi
    Optical and Quantum Electronics, 2024, 56
  • [7] New soliton, kink and periodic solutions for fractional space-time coupled Schrödinger equation
    Alharbi, Manal
    Elmandouh, Adel
    Elbrolosy, Mamdouh
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 114 : 123 - 135
  • [8] Novel optical soliton solutions for time-fractional resonant nonlinear Schrödinger equation in optical fiber
    N. Das
    S. Saha Ray
    Optical and Quantum Electronics, 2022, 54
  • [9] Optical soliton for perturbed nonlinear fractional Schrödinger equation by extended trial function method
    Badar Nawaz
    Syed Tahir Raza Rizvi
    Kashif Ali
    Muhammad Younis
    Optical and Quantum Electronics, 2018, 50
  • [10] Optical soliton solutions of time-space nonlinear fractional Schrödinger's equation via two different techniques
    Razzaq, Waseem
    Zafar, Asim
    Raheel, M.
    Liu, Jian-Guo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 547 (02)