A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures

被引:0
作者
Markus Köppel
Vincent Martin
Jean E. Roberts
机构
[1] Universtität Stuttgart,
[2] IANS,undefined
[3] Université de Technologie de Compiègne (UTC),undefined
[4] LMAC,undefined
[5] INRIA Paris,undefined
来源
GEM - International Journal on Geomathematics | 2019年 / 10卷
关键词
Discrete fracture model; Finite element method; Stabilized Lagrange multiplier method; Penalization; Nonconforming grids; 35J50; 35J57; 65N12; 65N85; 76M10; 76S05;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we introduce a stabilized, numerical method for a multidimensional, discrete-fracture model (DFM) for single-phase Darcy flow in fractured porous media. In the model, introduced in an earlier work, flow in the (n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)$$\end{document}-dimensional fracture domain is coupled with that in the n-dimensional bulk or matrix domain by the use of Lagrange multipliers. Thus the model permits a finite element discretization in which the meshes in the fracture and matrix domains are independent so that irregular meshing and in particular the generation of small elements can be avoided. In this paper we introduce in the numerical formulation, which is a saddle-point problem based on a primal, variational formulation for flow in the matrix domain and in the fracture system, a weakly consistent stabilizing term which penalizes discontinuities in the Lagrange multipliers. For this penalized scheme we show stability and prove convergence. With numerical experiments we analyze the performance of the method for various choices of the penalization parameter and compare with other numerical DFM’s.
引用
收藏
相关论文
共 93 条
  • [1] Ahmed E(2017)A reduced fracture model for two-phase flow with different rock types Math. Comput. Simul. 137 49-70
  • [2] Jaffré J(2007)A posteriori error estimation for discontinuous Galerkin finite element approximation SIAM J. Numer. Anal. 45 1777-1798
  • [3] Roberts JE(2009)Asymptotic and numerical modelling of flows in fractured porous media ESAIM: M2AN 43 239-275
  • [4] Ainsworth M(2016)Mimetic finite difference approximation of flows in fractured porous media ESAIM: M2AN 50 809-832
  • [5] Angot P(1984)Modelling fluid flow in fractured-porous rock masses by finite-element techniques Int. J. Numer. Methods Fluids 4 337-348
  • [6] Boyer F(2014)An optimization approach for large scale simulations of discrete fracture network flows J. Comput. Phys. 256 838-853
  • [7] Hubert F(2018)Robust discretization of flow in fractured porous media SIAM J. Numer. Anal. 56 2203-2233
  • [8] Antonietti PF(2015)Vertex approximate gradient scheme for hybrid dimensional two-phase Darcy flows in fractured porous media ESAIM Math. Model. Numer. Anal. 49 303-330
  • [9] Formaggia L(2005)A family of mimetic finite difference methods on polygonal and polyhedral meshes Math. Models Methods Appl. Sci. 15 1533-1551
  • [10] Scotti A(2010)Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method Comput. Methods Appl. Mech. Eng. 199 2680-2686