On a Certain Duality for Segmented Minmax Problems

被引:0
作者
Meinardus G. [1 ]
Oettli W. [1 ]
机构
[1] Universität Mannheim, Fak. F. Mathematik und Informatik
关键词
Duality; K-partition; Segmented approximation; Segmented minmax problems;
D O I
10.1007/BF02684408
中图分类号
学科分类号
摘要
Minmax problems are considered, where the set of parameters consists of a finite number of knots from a real interval. A theory of a nonstandard duality is developed to some extent. Several applications as well as some computational aspects are discussed.
引用
收藏
页码:91 / 101
页数:10
相关论文
共 9 条
[1]  
Grothmann R., Mhaskar H.N., Detection of singularities using segment approximation, Math. Comp., 59, pp. 533-540, (1992)
[2]  
Lawson Ch.L., Characteristic properties of the segmented rational minmax approximation problem, Numer. Math., 6, pp. 293-301, (1964)
[3]  
Maika A.P., Pavlidis T., Uniform piecewise polynomial approximation with variable joints, J. Approx. Theory, 12, pp. 61-69, (1974)
[4]  
Meinardus G., Approximation of Functions: Theory and Numerical Methods, (1967)
[5]  
Meinardus G., Zur Segmentapproximation mit Polynomen, ZAMM, 46, pp. 239-246, (1966)
[6]  
Meinardus G., Some results in segmented approximation, Comput. Math. Appl., 33, pp. 165-180, (1997)
[7]  
Meinardus G., Nurnberger G., Sommer M., Strauss H., Algorithms for piecewise polynomials and splines with free knots, Math. Comp., 53, pp. 235-247, (1989)
[8]  
Nurnberger G., Sommer M., Strauss H., An algorithm for segment approximation, Numer. Math., 48, pp. 463-477, (1986)
[9]  
Phillips G.M., Error estimates for best polynomial approximation, Approximation Theory, pp. 1-6, (1970)