Riesz Idempotent and Weyl’s Theorem for w-hyponormal Operators

被引:0
作者
Young Min Han
Jun Ik Lee
Derming Wang
机构
[1] Kyunghee University,Department of Mathematics
[2] California State University,Department of Mathematics
[3] Long Beach,undefined
来源
Integral Equations and Operator Theory | 2005年 / 53卷
关键词
Primary 47A10; 47A53; 47B20; -hyponormal operators; Weyl’s theorem; single valued extension property;
D O I
暂无
中图分类号
学科分类号
摘要
Let T be a w-hyponormal operator on a Hilbert space H, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde T$$\end{document} its Aluthge transform, λ an isolated point of the spectrum of T, and Eλ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widetilde E_{\lambda }$$\end{document} the Riesz idempotents, with respect to λ, of T and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widetilde T, $$\end{document} respectively. It is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\lambda } H = \widetilde E_{\lambda } H.$$\end{document} Consequently, Eλ is self-adjoint, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\lambda } = \widetilde E_{\lambda } $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E_{\lambda } H = \ker (T - \lambda ) = \ker (T - \lambda )^*$$\end{document} if λ  ≠  0. Moreover, it is shown that Weyl’s theorem holds for f(T), where f ∈ H(σ (T)).
引用
收藏
页码:51 / 60
页数:9
相关论文
empty
未找到相关数据