Quantum video encryption based on bitplanes and improved Arnold scrambling

被引:0
作者
Yuxing Wei
Hai-sheng Li
Kai Liu
Shantao Zhao
机构
[1] Guangxi Normal University,College of Electronic and Information Engineering
来源
Quantum Information Processing | / 23卷
关键词
BRQV; Quantum wavelet transform; Improved Arnold scrambling; Quantum video encryption;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum video encryption is an essential method for ensuring video content security. This paper proposes a quantum video encryption method based on bitplanes and improved Arnold scrambling. Firstly, we design a quantum video representation based on bitplanes (BRQV) and an improved Arnold scrambling to entangle video frames. Then, we use 2D quantum wavelet transforms and an improved logic mapping for frequency-domain encryption. The encryption security analysis reveals that the post-encryption SSIM value is close to 0.015, with an information entropy reaching 7.9541. The circuit complexity analysis shows that the proposed method can realize the video encryption using 16n3+272n2-88n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$16{n^3} + 272{n^2} - 88n$$\end{document} quantum basic gates with the circuit width 2n+log2n+5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n + \log _2 n + 5$$\end{document}. The best existing quantum video encryption method needs O(2nn3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{O(}}{2^n}{n^3})$$\end{document} quantum basic gates with the circuit width 3n+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3n + 3$$\end{document}. Simulation results demonstrate that the proposed video encryption method exhibits low correlation coefficients and high efficiency.
引用
收藏
相关论文
共 87 条
[11]  
Zhang YN(2022)Quantum image encryption based on baker map and 2D logistic map Int. J. Theor. Phys. 61 64-309
[12]  
Venegas-Andraca SE(2022)Development of video encryption scheme based on quantum controlled dense coding using GHZ state for smart home scenario Wirel. Pers. Commun. 123 295-1982
[13]  
Ball JL(2017)A simple encryption algorithm for quantum color image Int. J. Theor. Phys. 56 1961-84
[14]  
Iliyasu AM(2011)A flexible representation of quantum images for polynomial preparation, image compression, and processing operations Quantum Inf. Process. 10 63-2860
[15]  
Le PQ(2013)NEQR: a novel enhanced quantum representation of digital images Quantum Inf. Process. 12 2833-354
[16]  
Dong FY(2019)Quantum implementation circuits of quantum signal representation and type conversion IEEE Trans. Circuits Syst. I Reg. Papers 66 341-62404
[17]  
Hirota K(2018)A quantum image representation based on bitplanes IEEE Access 6 62396-1497
[18]  
Liang HR(2011)A framework for representing and producing movies on quantum computers Int. J. Quantum Inf. 9 1459-2904
[19]  
Tao XY(2015)Video encryption and decryption on quantum computers Int. J. Theor. Phys. 54 2893-1551
[20]  
Zhou NR(2022)A hybrid encryption scheme for quantum secure video conferencing combined with blockchain Mathematics 10 3037-8480