Quantum video encryption based on bitplanes and improved Arnold scrambling

被引:0
作者
Yuxing Wei
Hai-sheng Li
Kai Liu
Shantao Zhao
机构
[1] Guangxi Normal University,College of Electronic and Information Engineering
来源
Quantum Information Processing | / 23卷
关键词
BRQV; Quantum wavelet transform; Improved Arnold scrambling; Quantum video encryption;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum video encryption is an essential method for ensuring video content security. This paper proposes a quantum video encryption method based on bitplanes and improved Arnold scrambling. Firstly, we design a quantum video representation based on bitplanes (BRQV) and an improved Arnold scrambling to entangle video frames. Then, we use 2D quantum wavelet transforms and an improved logic mapping for frequency-domain encryption. The encryption security analysis reveals that the post-encryption SSIM value is close to 0.015, with an information entropy reaching 7.9541. The circuit complexity analysis shows that the proposed method can realize the video encryption using 16n3+272n2-88n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$16{n^3} + 272{n^2} - 88n$$\end{document} quantum basic gates with the circuit width 2n+log2n+5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n + \log _2 n + 5$$\end{document}. The best existing quantum video encryption method needs O(2nn3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{O(}}{2^n}{n^3})$$\end{document} quantum basic gates with the circuit width 3n+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3n + 3$$\end{document}. Simulation results demonstrate that the proposed video encryption method exhibits low correlation coefficients and high efficiency.
引用
收藏
相关论文
共 87 条
[1]  
Blais A(2020)Quantum information processing and quantum optics with circuit quantum electrodynamics Nat. Phys. 16 247-256
[2]  
Girvin SM(2016)A survey of quantum image representations Quantum Inf. Process. 15 1-35
[3]  
Oliver WD(2012)Recent development in quantum communication Chin. Sci. Bull. 57 4694-4700
[4]  
Yan F(2022)Review of quantum image processing Arch. Comput. Meth. Eng. 29 737-761
[5]  
Iliyasu AM(2010)Processing images in entangled quantum systems Quantum Inf. Process. 9 1-11
[6]  
Venegas-Andraca SE(2012)Watermarking and authentication of quantum images based on restricted geometric transformations Inf. Sci. 186 126-149
[7]  
Song SY(2016)Quantum image encryption based on generalized affine transform and logistic map Quantum Inf. Process. 15 2701-2724
[8]  
Wang C(2013)Image storage, retrieval, compression and segmentation in a quantum system Quantum Inf. Process. 12 2269-2290
[9]  
Wang ZB(2014)The quantum realization of Arnold and Fibonacci image scrambling Quantum Inf. Process. 13 1223-1236
[10]  
Xu MZ(2016)Quantum image encryption algorithm based on quantum image XOR operations Int. J. Theor. Phys. 55 3234-3250