Distorted Plane Waves on Manifolds of Nonpositive Curvature

被引:0
作者
Maxime Ingremeau
机构
[1] Universite Paris-Sud,
来源
Communications in Mathematical Physics | 2017年 / 350卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We will consider the high frequency behaviour of distorted plane waves on manifolds of nonpositive curvature which are Euclidean or hyperbolic near infinity, under the assumption that the curvature is negative close to the trapped set of the geodesic flow and that the topological pressure associated to half the unstable Jacobian is negative. We obtain a precise expression for distorted plane waves in the high frequency limit, similar to the one in Guillarmou and Naud (Am J Math 136:445–479, 2014) in the case of convex co-compact manifolds. In particular, we will show Lloc∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L_{loc}^\infty}$$\end{document} bounds on distorted plane waves that are uniform with frequency. We will also show a small-scale equidistribution result for the real part of distorted plane waves, which implies sharp bounds for the volume of their nodal sets.
引用
收藏
页码:845 / 891
页数:46
相关论文
共 21 条
[1]  
Bonthonneau Y.(2016)Long time quantum evolution of observables Commun. Math Phys. 343 311-359
[2]  
Brüning J.(1978)Über knoten von eigenfunktionen des Laplace–Beltrami-operators Math. Z. 158 15-21
[3]  
Donnelly H.(1988)Nodal sets of eigenfunctions on Riemannian manifolds Invent. Math. 93 161-183
[4]  
Fefferman C.(2014)Microlocal limits of plane waves and Eisenstein functions Ann. Sci. Éc. Norm. Sup. 47 371-448
[5]  
Dyatlov S.(1992)Nodal sets of eigenfunctions on Riemann surfaces J. Diff. Geom. 36 493-506
[6]  
Guillarmou C.(2012)Gluing semiclassical resolvent estimates via propagation of singularities Int. Math. Res. Not. 62 5409-5443
[7]  
Dong R.T.(2011)Microlocal limits of Eisenstein functions away from the unitarity axis J. Spectr. Theory 2 181-202
[8]  
Datchev K.(2014)Equidistribution of Eisenstein series for convex co-compact hyperbolic manifolds Am. J. Math. 136 445-479
[9]  
Vasy A.(2015)Small scale quantum ergodicity in negatively curved manifolds Nonlinearity 28 3263-3288
[10]  
Dyatlov S.(2016) norms, nodal sets, and quantum ergodicity Adv. Math. 290 938-966