A note on n! modulo p

被引:0
作者
M. Z. Garaev
J. Hernández
机构
[1] Universidad Nacional Autónoma de México,Centro de Ciencias Matemáticas
来源
Monatshefte für Mathematik | 2017年 / 182卷
关键词
Factorials; Congruences; Exponential and character sums; Additive combinatorics; 11L03; 11L40; 11B75; 11B50;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime, ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} and 0<L+1<L+N<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<L+1<L+N < p$$\end{document}. We prove that if p1/2+ε<N<p1-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{1/2+\varepsilon }< N <p^{1-\varepsilon }$$\end{document}, then #{n!(modp);L+1≤n≤L+N}>c(NlogN)1/2,c=c(ε)>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \#\{n!\,\,({\mathrm{mod}} \,p);\,\, L+1\le n\le L+N\} > c (N\log N)^{1/2},\,\, c=c(\varepsilon )>0. \end{aligned}$$\end{document}We use this bound to show that any λ≢0(modp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \not \equiv 0\ ({\mathrm{mod}}\, p)$$\end{document} can be represented in the form λ≡n1!⋯n7!(modp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \equiv n_1!\cdots n_7!\ ({\mathrm{mod}}\, p)$$\end{document}, where ni=o(p11/12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_i=o(p^{11/12})$$\end{document}. This refines the previously known range for ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_i$$\end{document}.
引用
收藏
页码:23 / 31
页数:8
相关论文
共 18 条
  • [1] Bombieri E(1966)On exponential sums in finite fields Am. J. Math. 88 71-105
  • [2] Chalk JHH(1971)On Bombieri’s estimate for exponential sums Acta Arith. 18 191-212
  • [3] Smith RA(2014)Points on curves in small boxes and applications Michigan Math. J. 63 503-534
  • [4] Chang M-C(2011)Concentration of points on two and three dimensional modular hyperbolas and applications Geom. Funct. Anal. 21 892-904
  • [5] Cilleruelo J(2010)On the concentration of points on modular hyperbolas and exponential curves Acta Arith. 142 59-66
  • [6] Garaev MZ(2004)Character sums and congruences with n! Trans. Am. Math. Soc. 356 5089-5102
  • [7] Hernández J(2007)On the value set of Bol. Soc. Mat. Mexicana 13 1-6
  • [8] Shparlinski IE(2008) modulo a large prime Bol. Soc. Mat. Mexicana 14 165-175
  • [9] Zumalacárregui A(undefined)Representations of residue classes by product of factorials, binomial coefficients and sum of harmonic sums modulo a prime undefined undefined undefined-undefined
  • [10] Cilleruelo J(undefined)undefined undefined undefined undefined-undefined