Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm

被引:0
|
作者
Hong-li Qi
Hui Zhao
Wei-wen Liu
Hai-bo Zhang
机构
[1] Shanghai Jiao Tong University,Department of Instrument Science and Engineering
[2] North University of China,Instrumentation Science and Dynamic Measurement Laboratory
关键词
Grating eddy current displacement sensor (GECDS); Artificial neural network (ANN); Genetic algorithm (GA); Parameters optimization; Nonlinearity error; TH7; TM15;
D O I
暂无
中图分类号
学科分类号
摘要
A grating eddy current displacement sensor (GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions. The parameters optimization of the sensor is essential for economic and efficient production. This paper proposes a method to combine an artificial neural network (ANN) and a genetic algorithm (GA) for the sensor parameters optimization. A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS, and then a GA is used in the optimization process to determine the design parameter values, resulting in a desired minimal nonlinearity error of about 0.11%. The calculated nonlinearity error is 0.25%. These results show that the proposed method performs well for the parameters optimization of the GECDS.
引用
收藏
页码:1205 / 1212
页数:7
相关论文
共 50 条
  • [31] Displacement sensor circuit using eddy current for automobile brake
    Kim, Y. S.
    Choi, Y. H.
    Lee, J. M.
    Noh, J. S.
    Bien, F.
    ELECTRONICS LETTERS, 2010, 46 (22) : 1504 - 1505
  • [32] Design and Analysis of Small Size Eddy Current Displacement Sensor
    Wang, Sheng-Ching
    Xie, Bo-Ren
    Huang, San-Ming
    SENSORS, 2022, 22 (19)
  • [33] Analysis of eddy current data using a probabilistic neural network (PNN)
    Au-Yang, MK
    Griffith, JC
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2002, 124 (03): : 261 - 264
  • [34] Nonlinearity Analysis and Parameters Optimization for an Inductive Angle Sensor
    Ye, Lin
    Yang, Ming
    Xu, Liang
    Zhuang, Xiaoqi
    Dong, Zhaopeng
    Li, Shiyang
    SENSORS, 2014, 14 (03) : 4111 - 4125
  • [35] Your fuzzy relational neural network parameters optimization with a genetic algorithm.
    Barajas, SE
    Reyes, CA
    FUZZ-IEEE 2005: Proceedings of the IEEE International Conference on Fuzzy Systems: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 684 - 689
  • [36] A hybrid model using genetic algorithm and neural network for process parameters optimization in NC camshaft grinding
    Z H Deng
    X H Zhang
    W Liu
    H Cao
    The International Journal of Advanced Manufacturing Technology, 2009, 45 : 859 - 866
  • [37] Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method
    Shen Changyu
    Wang Lixia
    Li Qian
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 183 (2-3) : 412 - 418
  • [38] A hybrid model using genetic algorithm and neural network for process parameters optimization in NC camshaft grinding
    Deng, Z. H.
    Zhang, X. H.
    Liu, W.
    Cao, H.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 45 (9-10): : 859 - 866
  • [39] Efficient optimization of process parameters in 2.5 D end milling using neural network and genetic algorithm
    Kumar D.
    Chandna P.
    Pal M.
    International Journal of System Assurance Engineering and Management, 2018, 9 (5) : 1198 - 1205
  • [40] Parameters Optimization of Back Propagation Neural Network Based on Memetic Algorithm Coupled with Genetic Algorithm
    Li, Qiang
    Zhang, Xiaotong
    Rigat, Azzeddine
    Li, Yiping
    IEEE 12TH INT CONF UBIQUITOUS INTELLIGENCE & COMP/IEEE 12TH INT CONF ADV & TRUSTED COMP/IEEE 15TH INT CONF SCALABLE COMP & COMMUN/IEEE INT CONF CLOUD & BIG DATA COMP/IEEE INT CONF INTERNET PEOPLE AND ASSOCIATED SYMPOSIA/WORKSHOPS, 2015, : 1359 - 1364