Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm

被引:0
|
作者
Hong-li Qi
Hui Zhao
Wei-wen Liu
Hai-bo Zhang
机构
[1] Shanghai Jiao Tong University,Department of Instrument Science and Engineering
[2] North University of China,Instrumentation Science and Dynamic Measurement Laboratory
关键词
Grating eddy current displacement sensor (GECDS); Artificial neural network (ANN); Genetic algorithm (GA); Parameters optimization; Nonlinearity error; TH7; TM15;
D O I
暂无
中图分类号
学科分类号
摘要
A grating eddy current displacement sensor (GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions. The parameters optimization of the sensor is essential for economic and efficient production. This paper proposes a method to combine an artificial neural network (ANN) and a genetic algorithm (GA) for the sensor parameters optimization. A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS, and then a GA is used in the optimization process to determine the design parameter values, resulting in a desired minimal nonlinearity error of about 0.11%. The calculated nonlinearity error is 0.25%. These results show that the proposed method performs well for the parameters optimization of the GECDS.
引用
收藏
页码:1205 / 1212
页数:7
相关论文
共 50 条
  • [21] A new modeling method based on genetic neural network for numeral eddy current sensor
    Yu, Along
    Li, Zheng
    RARE METAL MATERIALS AND ENGINEERING, 2006, 35 : 611 - 613
  • [22] Analysis and optimization of louvered separator using genetic algorithm and artificial neural network
    Babaoglu, Nihan Uygur
    Elsayed, Khairy
    Parvaz, Farzad
    Foroozesh, Jamal
    Hosseini, Seyyed Hossein
    Ahmadi, Goodarz
    POWDER TECHNOLOGY, 2022, 398
  • [23] Optimization of cutting parameters by coupling neural network model and genetic algorithm
    Tang Donghong
    Sun Houfang
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 2284 - 2287
  • [24] Optimization of bridges' parameters based on bp neural network and genetic algorithm
    Xi, Hui-Feng
    Tang, Li-Qun
    He, Ting-Hui
    Huang, Xiao-Qing
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2008, 47 (SUPPL. 2): : 46 - 49
  • [25] Linear optimisation of parameters of an eddy current sensor used for a displacement measurement
    Ricken, W
    TECHNISCHES MESSEN, 2004, 71 (09): : 460 - 465
  • [26] Optimization of LPDC Process Parameters Using the Combination of Artificial Neural Network and Genetic Algorithm Method
    Liqiang Zhang
    Luoxing Li
    Shiuping Wang
    Biwu Zhu
    Journal of Materials Engineering and Performance, 2012, 21 : 492 - 499
  • [27] Neural network modeling and optimization of process parameters for production of chhana cake using genetic algorithm
    Mukhopadhyay, S.
    Mishra, H. N.
    Goswami, T. K.
    Majumdar, G. C.
    INTERNATIONAL FOOD RESEARCH JOURNAL, 2015, 22 (02): : 465 - 475
  • [28] Optimization of LPDC Process Parameters Using the Combination of Artificial Neural Network and Genetic Algorithm Method
    Zhang, Liqiang
    Li, Luoxing
    Wang, Shiuping
    Zhu, Biwu
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2012, 21 (04) : 492 - 499
  • [29] Learning of neural network parameters using a fuzzy genetic algorithm
    Ling, SH
    Lam, HK
    Leung, FHF
    Tam, PKS
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1928 - 1933
  • [30] Optimization of BP Neural Network Classifier Using Genetic Algorithm
    Zhou Weihong
    Xiong Shunqing
    INTELLIGENCE COMPUTATION AND EVOLUTIONARY COMPUTATION, 2013, 180 : 599 - 605