Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm

被引:0
|
作者
Hong-li Qi
Hui Zhao
Wei-wen Liu
Hai-bo Zhang
机构
[1] Shanghai Jiao Tong University,Department of Instrument Science and Engineering
[2] North University of China,Instrumentation Science and Dynamic Measurement Laboratory
关键词
Grating eddy current displacement sensor (GECDS); Artificial neural network (ANN); Genetic algorithm (GA); Parameters optimization; Nonlinearity error; TH7; TM15;
D O I
暂无
中图分类号
学科分类号
摘要
A grating eddy current displacement sensor (GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions. The parameters optimization of the sensor is essential for economic and efficient production. This paper proposes a method to combine an artificial neural network (ANN) and a genetic algorithm (GA) for the sensor parameters optimization. A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS, and then a GA is used in the optimization process to determine the design parameter values, resulting in a desired minimal nonlinearity error of about 0.11%. The calculated nonlinearity error is 0.25%. These results show that the proposed method performs well for the parameters optimization of the GECDS.
引用
收藏
页码:1205 / 1212
页数:7
相关论文
共 50 条
  • [1] Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm
    Qi, Hong-li
    Zhao, Hui
    Liu, Wei-wen
    Zhang, Hai-bo
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (08): : 1205 - 1212
  • [2] Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm附视频
    Hongli QIHui ZHAOWeiwen LIUHaibo ZHANGDepartment of Instrument Science and EngineeringShanghai Jiao Tong UniversityShanghai ChinaInstrumentation Science and Dynamic Measurement LaboratoryNorth University of ChinaTaiyuan China
    Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal), 2009, (08) : 1205 - 1212
  • [3] Multi-parameters Optimization and Nonlinearity Analysis of the Grating Eddy Current Displacement Sensor
    Qi, Hongli
    Zhao, Hui
    Liu, Weiwen
    2008 IEEE CONFERENCE ON ROBOTICS, AUTOMATION, AND MECHATRONICS, VOLS 1 AND 2, 2008, : 511 - 516
  • [5] Characteristics analysis and parameters optimization for the grating eddy current displacement sensor
    Hong-li Qi
    Hui Zhao
    Wei-wen Liu
    Journal of Zhejiang University-SCIENCE A, 2009, 10 : 1029 - 1037
  • [6] Characteristics analysis and parameters optimization for the grating eddy current displacement sensor
    Qi, Hong-li
    Zhao, Hui
    Liu, Wei-wen
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (07): : 1029 - 1037
  • [7] Analysis on Parameters of Grating Eddy Current Displacement Sensor
    Li Kun
    Tao Wei
    Zhao Hui
    Yang Jingjing
    2016 10TH INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY (ICST), 2016,
  • [8] Numeral eddy current sensor modelling based on genetic neural network
    俞阿龙
    Chinese Physics B, 2008, 17 (03) : 878 - 882
  • [9] Numeral eddy current sensor modelling based on genetic neural network
    Yu A-Long
    CHINESE PHYSICS B, 2008, 17 (03) : 878 - 882
  • [10] Sensor network optimization using a genetic algorithm
    Jin, SY
    Zhou, M
    Wu, AS
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS: COMPUTER SCIENCE AND ENGINEERING: I, 2003, : 257 - 262